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Introduction 
 

This textbook is designed to give you an overview of what an operating system is, and how a 
modern operating system works.  There are many different examples of operating systems 

available for computers.  The most popular operating systems belong to the Microsoft Windows 
family (such as Windows 98, XP and Vista).  Other examples are Unix and Linux, Mac OS X, and 
specialized operating systems for handheld devices like mobile phones. 

 
An operating system is the software that controls (or 

operates) all of the parts of your computer.  It manages all 
of your resources, and lets you interface with the 
computer.  This textbook takes a look at the main problems 

that an operating system must be able to overcome, and 
the main functions that it must be able to perform.  We 

begin by reviewing the architecture (or structure) of the 
physical parts of a computer, and how they communicate 
with each other.  Then we take a look at fundamental 

operating system concepts, processes and process 
management, memory management, controlling input and 

output devices, and file system management.   
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Unit 1: Computer Architecture Review 
 

Why Review Computer Architecture? 
 

This textbook focuses on how operating systems work.  Operating systems (or system software) 
are one of the two main types of software (the other is application software).  However, we need 

to know some important things about the hardware inside of a computer in order to understand 
some of the critical functions of any operating system. 

 
Computer architecture refers to the overall design of the 

physical parts of the computer.  That is, it refers to: 
 

 what the main parts are; 

 how they are physically connected to each other; and 
 how they work together; 

 
Although all of the parts of a computer are connected to 
each other by the motherboard, the operating system is 

essential in order to control how those parts talk to each 
other.  Without the operating system, the parts of the 

computer would not be able to do anything that the user 
needs them to do!  We need to know some basics about how 
the main parts of a computer are physically connected to 

each other before we can truly understand what an 
operating system does. 

 
In this chapter we will look at a general map of a computer‘s architecture, showing the physical 
structure that allows all of the parts to exchange information and instructions.  We will also take 

a brief look at some of the major components of a computer that an operating system must be 
concerned with, including the CPU, memory and how devices actually talk to each other. 
 

 

A motherboard 
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A Map of Your Computer‘s Architecture 
 

 
Lines (traces) on a motherboard 

are like roads in a city 

You can think of the motherboard as a big city, and all of the parts 
of the computer as buildings throughout the city.  Of course, there 

are roads to get between all of the buildings.  These roads are 
those little metal lines (called traces) running all over the 

motherboard.  These traces are part of what is called the system 
bus.  There are several different busses on the motherboard, 
depending upon which devices they are connecting. 

 
Some of the major components of your computer‘s architecture 

(the main buildings) that are controlled by the operating system 
include: 

 

CPU – Central Processing Unit 

 This is the brain of your computer.  It performs all of the calculations. 
 

RAM – Random Access Memory 
 This is your system memory. 

 This is like a desk, or a workspace, where your computer temporarily stores all of the 
information (data) and instructions (software or program code) that it is currently using. 

 Most computers today have between 1 to 4 Gigabytes (GB) of RAM. 

 
Graphics 

 Many computers have a dedicated system bus and expansion card slot just for a video 
card. 

 Many video cards include their own memory so that you do not need to use up all of the 

RAM to run your monitor. 
 

I/O Busses 
 Special busses (roads) connecting all of your input/output devices to your motherboard. 
 The three main types of I/O busses are ISA, PCI and USB. 

 
 ISA – Industry Standard Architecture 

o This was the industry standard in the 1980s and early 1990s. 
o It is now used to provide support for older and slower devices. 
o Common devices connected to the ISA bus might include an older modem, a 

joystick, a mouse, or a printer (using the older, wide-style printer port). 
 

 PCI – Peripheral Component Interconnect 
o This is for newer and faster devices than ISA. 
o You can think of this like a wider road, with a faster speed limit! 

o Some common devices connected to the PCI bus include your network card, EIDE 
devices (hard disk, CD/DVD drive, etc). 

 
 USB – Universal Serial Bus 

o Many new devices can connect to your computer using a USB port. 

o Examples include webcams, MP3 players, printers, PDAs, etc. 
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Figure 1.1 (below) is a diagram of the architecture of these main components (how they are all 

connected) 
 

 
 

Figure 1.1 
Diagram of system bus architecture 

 

 

Busses and Bridges 
 

In Figure 1.1 we see that the major components are all connected by different busses.  The 

Front Side Bus provides the main connection between the CPU, RAM, the graphics card (AGP – 
Accelerated Graphics Port), and the Northern and Southern Bridges.  The Front Side Bus looks 

wider than the I/O busses because it is wider and faster.  It contains more wires (traces) for the 
transmission of data between the devices.  In the comparison to a city, the Front Side Bus is like 
a major freeway with a fast speed limit.  The smaller I/O busses are like smaller side streets.  

Some of the I/O busses are narrower and slower than others. 
 

The two bridges in Figure 1.1 perform the same function inside your computer that would be 
performed by bridges or roundabouts in a city.  They are major intersections where data from 



Operating System Fundamentals 9 

 

different devices cross paths.  Of course, like any bridge or roundabout, there needs to be traffic 

laws to govern who goes first.  If there were no rules (and no police to enforce the rules) then 
everyone would crash together.  In computer terms, your data would become corrupted, and no 
information would ever reach its destination. 

 
Figure 1.2 (below) compares the system bus architecture to a series of city streets with 

roundabouts: 

 
 

Figure 1.2 
A different view of system bus architecture 
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The Central Processing Unit (CPU) 
 

The CPU is the brain of your computer.  It performs all of the calculations.  
Of course, in order to do its job, the CPU needs commands to perform, and 

data to work with.  These instructions and data travel to and from the CPU 
on the system bus.  The operating system provides rules for how that 

information gets back and forth, and how it will be used by the CPU. 
 

 

Inside the CPU 
 
Inside the CPU there are many important parts: 
 

 
 

Figure 1.3 
The parts inside a typical CPU 

 

 The Arithmetic Logic Unit (ALU), which 
performs the calculations 

 
 The Control Unit, which controls the flow of 

data inside the CPU 

 
 The Interface Unit, or the I/O Unit, which 

acts like a gate for information entering and 
leaving the CPU 

 

 Registers, which temporarily hold data and 
instructions waiting to be used 

 
 The Program Counter (PC Register), which is 

a special register holding the address of the 

next instruction the CPU needs from the RAM 

 

 

The Fetch—Decode—Execute Cycle 

 
The CPU finds, interprets, and executes program code using a 

specific cycle, as follows: 
 

1. The CPU looks in the PC register for the location of the next 
program instruction. 

 

2. The CPU retrieves the next instruction from RAM, and places 
it in a register. 

 
3. The CPU changes the PC register with the address in RAM for 

the next instruction. 

 
4. The CPU performs the first instruction, and repeats the cycle 

until the power is lost. 
 

Check PC register 

for address of next 

instruction

Retrieve next 

instruction from 

RAM, and place it 

in a register

Place address of 

next instruction in 

PC register

Execute first 

instruction

Repeat

Cycle

Figure 1.4
The Fetch—Decode—Execute Cycle
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Memory 
 

Memory is stored on Radom Access Memory (RAM) 
chips.  A typical computer today has between 1 

Gigabyte (GB) and 4 GB of RAM. 
 

Memory is used to: 
 

 Store data 

 
 Store commands (instructions) 

 
 Store system settings 

 
 

 

 
Figure 1.5 

Address structure of RAM 

Each RAM chip contains millions of address 
spaces.  Each address space is the same size, 

and has its own unique identifying number 
(address).  The operating system provides the 
rules for using these memory spaces, and 

controls storage and retrieval of information 
from RAM. 
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Fast fact – RAM is a device! 
 
Without an operating system, a computer would 
not be able to use RAM chips.  This is because 
your computer treats the RAM chips like a 
device that has been installed (just like a 
webcam, or a printer).  When your computer first 
starts up, it can only use a small amount of RAM 
memory (1 Megabyte (MB)) that is built into the 
motherboard.  Device drivers for RAM chips are 
included with the operating system, and must be 
loaded as part of the boot process in order for 
the RAM to work! 
 
Problem: If RAM needs an operating system to 
work, and an operating system needs RAM in 
order to work, how does your computer activate 
its RAM to load the operating system? 
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Talking to Devices 
 
Devices talk to each other and to the CPU.  They need to communicate in order to share 

information, and in order to be told what to do!  There are two types of devices that are 
controlled by information from the CPU: 

 
 Programmed devices, and 

 

 Interrupt-driven devices 
 

 

Programmed Input/Output Devices 
 
Programmed I/O devices need to be completely controlled by the CPU.  That means the CPU 
must stop whatever task it is doing, and focus on the device until it has finished whatever it has 

been told to do.  This wastes a lot of processing time! 
 

Interrupt-Driven Devices 
 

A more efficient way to control devices is by using an interrupt controller.  The 
interrupt controlled keeps track of whichever devices need to talk to the CPU, 
and gives different priority to different devices.  For example, the keyboard 

gets higher priority than a modem.  When a device needs new instructions, or 
when it has finished a task, the interrupt controller issues an interrupt to the 

CPU (like raising your hand in class).  The CPU stops whatever it is doing long 
enough to talk to the device.  Although this is more difficult to program, it 
results in better computer performance. 

 
Of course, the operating system provides all of the rules for communicating with both 

programmed and interrupt-driven devices. 
 

Direct Memory Access 
 
Sometimes devices may want to talk to 

each other without ‗going through‘ the 
CPU.  The DMA Controller controls access 

to the system bus, and RAM, and 
bypasses the CPU.  The CPU does not 
need to get involved in the process, 

other than to set up the transfer.  The 
CPU will get an interrupt when the 

transfer is complete. 
 
Direct Memory Access is like adding 

police officers to a roundabout who will 
let traffic go through to other streets 

when the road is clear. 

The CPU 
(Not 
everyone 
needs his 
attention!) The Interrupt 

Controller 

Some devices 
don’t need to 
talk to the CPU 

I’m only going to 
McDonald’s!  Do I 
really need to go 

see the CPU first? 

Don’t worry, 
Sarge!  I’ll direct 
this car through 
the roundabout! 

The DMA Controller is 
like a second traffic 
officer who handles traffic 
not going to the CPU Can I 

go 
now? 

Figure 1.6 
DMA is like an extra police office who guides cars 

through a busy intersection without bothering 
anyone back at the police station first 
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Unit 2: Operating System Fundamentals 
 

What is an Operating System? 
 
You need two types of software in order to use your computer (or any other computerized 
device).  These are applications and system software.  Applications are the programs you use to 

do tasks, such as write a document, surf the web, or play games.  System software runs the 
computer system for you.  Another name for system software is an operating system.  There are 

many different operating systems, but they all have a similar architecture (or structure).  That is 
because they must all overcome the same problems and perform the same basic functions.  An 
operating system must be able to: 

 
 Manage system resources 

o CPU scheduling 
o Process management 
o Memory management 

o Input/Output device management 
o Storage device management (hard disks, CD/DVD drives, etc) 

o File System Management 
 
 Simplify the development and use of applications 

 

 

Examples of Operating Systems 
 
A number of operating systems are available for personal computers.  The most popular is 
Microsoft Windows, which is the operating system used on over ninety percent of the world‘s 

personal computer systems.  Another popular operating system is Mac OS X, which is the 
operating system used for Apple Macintosh computers (like the Mac Book Pro laptop series).  

While IMB PCs (mostly Windows) and Mac computers are not directly compatible, it is possible to 
use virtualization to run one operating system on an incompatible computer. 
 

Another group of widely used operating systems is based on UNIX.  UNIX was a command line 
interface operating system developed for large scale computers and networks in the 1960s.  The 

latest generation of operating systems derived from UNIX is called Linux.  It is a free, open-
source operating system that is supported by most computer platforms. 
 

 

Special Purpose Operating Systems 
 
Operating systems are not limited to just personal computers.  

Most electronic devices today use an operating system to 
manage their physical components and to make it easier to 
develop applications for use on the devices.  Examples include 

the Symbian, Blackberry, Palm and Windows Mobile operating 
systems used for personal digital assistants (PDAs) and mobile 

phones.  Specialized operating systems have even been 
developed to control computerized aircraft systems (VxWorks, 
pSOS and QNX are examples).
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The Structure of Operating Systems 
 

Layers 
 

Accessing computer resources is divided into layers.  The user represents 
one layer at one end of the system.  Your computer‘s hardware represents 
the layer at the opposite end of the system.  In order to use your hardware 

to do anything with the computer, you need software.  Software forms the 
layers in between the user and the hardware and is divided up into 

application software and the operating system.  The operating system must 
be able to manage resources from both the applications and hardware 
layers. 

 
In the computer layer system the user interacts directly with software 

applications.  The applications interact with both the user and the operating 
system.  The operating system interacts with the applications and controls 
the hardware. 

 
Each layer is isolated and only interacts directly with the layer below or 

above it.  If you make changes to any one layer, they only directly affect 
the layer next to it.  For example, if you install a new hardware device you 
do not need to change anything about the user or applications.  However, 

you do need to make changes to the operating system.  You need to install 
the device drivers that the operating system will use to control the new 

device.  If you install a new software application you do not need to make 
any changes to your hardware.  But you do need to make sure the 
application is supported by the operating system and the user will need to 

learn how to use the new application.  If you change the operating system 
you need to make sure that both your applications and your hardware will 

work with the new operating system. 
 
 

Running Multiple Operating Systems 
 

It is possible to install more than one operating system 
on a computer.  You can do this by partitioning your 

hard disk(s) and installing different operating systems 
on different partitions.  This can be very useful, 
because you may want to use different operating 

systems to perform different tasks.  For example, you 
may have specialized applications that will only work 

with one operating system, making them incompatible 
with the rest of your software.  When you turn your 
computer on, you are given a choice of which 

operating system to use.  You can only run one 
operating system at a time.  Figure 2.2 (right) shows 

the system of layers when multiple operating systems 
are installed on the same computer.   
 

USER

APPLICATIONS

OPERATING 

SYSTEM

HARDWARE

Figure 2.1
Layers in a 

computer system

Figure 2.2 
Layers in a computer with multiple 
partitions and operating systems 
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Running a Virtual Operating System 
 
What happens if you want to work on 

applications in two operating systems at the 
same time?  What about if you want to run an 
operating system that is not compatible with 

your computer‘s hardware?  (For example, you 
cannot install the Mac OS X operating system 

on an IBM compatible PC).  You can get around 
these problems by running a virtual computer. 
 

A virtual computer is really an application 
within one operating system that lets you 

pretend you have a different operating system 
installed.  Virtual computer applications like 
VMWare and Virtual PC act as translators.  

They convert instructions from the virtual 
operating system into instructions from the real 

operating system, which then controls your 
computer‘s hardware. 

 
Figure 2.3 (left) shows the structure of layers 
when you run a virtual operating system within 

a Windows operating system.  As far as 
Windows is concerned, it is simply running 

another application.  Notice that the layers 
between the virtual computer application and 
the user are just like the layers for a single 

operating system (Figure 2.1). 
 

 
 

 

Operating System Modes 
 
A typical operating system has two modes of operation.  These are like layers of operation within 
the operating system layer (Figure 2.1).  The User Mode is concerned with the actual interface 

between the user and the system.  It controls things like running applications and accessing 
files.    The Kernel Mode is concerned with everything running in the background.  It controls 

things like accessing system resources, controlling hardware functions and processing program 
instructions.  The Kernel forms the core of the operating system, and it acts like a supervisor for 
everything that is happening in the computer.  In the client-server model of an operating 

system, the User Mode is considered a client.  That is, the User Mode accesses resources 
provided by the Kernel (the server).  Figure 2.4 (below) shows what operating system functions 

are controlled by the User Mode and Kernel Mode. 

 

USER

Windows 

Applications

Windows

HARDWARE

Figure 2.3
Layers with a virtual operating system
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Figure 2.4 
Typical structure in the Client (User Mode) – Server (Kernel Mode) model of an operating system 

 
 

Starting an Operating System 

 
Most personal computers have similar architecture and can use a variety of different operating 
systems.  When a computer is first made, there is no operating system installed.  Even after you 

have an operating system installed, you can remove it and install a different one.  As we 
discussed earlier, you can even have multiple operating systems installed on the same personal 

computer.  This raises the question—how does your computer start the operating system?  If 
you have more than one operating system installed, how does your computer choose which 
operating system to use? 

 
Your computer is designed to start in stages.  In the first stage, you turn on the power supply to 

your computer.  This sends electricity to the motherboard on a wire called the ‗Voltage Good‘ 
line.  If the power supply is good, then the BIOS (Basic Input/Output System) chip takes over.  

At this stage the computer‘s CPU is operating in Real Mode (or real address mode), which means 
that it is only capable of using approximately 1 MB of memory built into the motherboard.  RAM 
will be initialized later using device drivers from the operating system. 

 
The BIOS chip contains basic instructions for starting up the rest of the computer system.  The 

first thing that it will do is a Power-On Self Test (POST), which will check to make sure all your 
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hardware is working properly.  If the hardware is all working, BIOS will then look for a small 

sector at the very beginning of your primary hard disk called the Master Boot Record (MBR).  
The MBR contains a list, or map, of all of the partitions on your computer‘s hard disk (or disks).  
After the MBR is found the Bootstrap Loader follows basic instructions for starting up the rest of 

the computer, including the operating system.  If multiple operating systems are installed, the 
user will be given a choice of which operating system to use. 

 
The next stage is called Early Kernel Initialization.  

Remember that the Kernel is the core of the 
operating system, and it regulates all of the 
background functions of your computer.  In the 

Early Kernel Initialization stage, a smaller core of 
the Kernel is activated.  This core includes the 

device drivers needed to use your computer‘s RAM 
chips.  Without the extra memory provided by 
RAM, it is not possible to run the more complicated 

code for the remainder of the operating system. 
 

Once the Early Kernel Initialization is complete, 
the CPU switches to Protected Mode.  The 
computer can now take advantage of the extended 

memory address system provided by RAM, and the 
operating system‘s Kernel is fully initialized.  Only 

at this stage are the first User Mode processes 
initialized, and the user can begin interacting with 
the operating system, applications and hardware.  

Figure 2.5 (below) shows the stages in starting an 
operating system. 

 

 
 
 

Remember – RAM is a device! 
 
In the first unit we said that without an 
operating system a computer would not be 
able to use RAM chips.  Your computer 
treats RAM chips like a device that has been 
installed.  When your computer first starts 
up, it can only use a small amount of RAM 
memory (1 MB) that is built into the 
motherboard.  Device drivers for RAM chips 
are included with the operating system, and 
must be loaded as part of the boot process 
in order for the RAM to work! 
 
Problem: If RAM needs an operating 
system to work, and an operating system 
needs RAM in order to work, how does your 
computer activate its RAM to load the 
operating system? 
 
Solution: Device drivers for RAM are loaded 
during the Early Kernel Initialization stage. 
 

 

Figure 2.5 
Stages in the startup of an operating system 
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Interfacing with an Operating System 
 

Types of User Interfaces 
 
An operating system operates the functions of a computer.  It also provides a way for users to 

interface with, or access, a computer‘s applications, resources and hardware.  There are two 
main types of user interfaces for an operating system: 

 
 Command Line Interface 
 Graphical User Interface (GUI) 

 
A command line interface uses typed commands to issue instructions to the computer.  It can be 

more difficult to use because the user must type the precise commands and locations of files.  
DOS (Disk Operating System) and UNIX are examples of command line interface operating 
systems. 

 
A GUI uses graphics (or pictures) and menus to help the user access resources and issue 

commands.  Windows XP, Linux and Mac OS X are examples of GUI operating systems. 
 

  
  

 
 

 

 

The Command Line Interpreter 
 

Applications are accessed at the User Mode level.  This means that they do not have the 
authority to directly access system resources that are controlled at the Kernel Mode level.  When 

a user types a command (in a command line interface) or performs a task within an application 
(using a GUI), processes are initiated.  Since those processes usually require access to system 
resources, the command line interpreter converts them into system actions (called system calls).  

Most interpreters execute applications to perform the system calls.   

 
 
 

Figure 2.6 
Examples of a command line and GUI interface 
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Managing System Resources 
 
An operating system needs to manage a wide range of system resources.  Some of the main 

resources controlled by the operating system include CPU scheduling and process management, 
memory (RAM), access to peripheral devices and file system management. 

 

 

CPU Scheduling 
 

Memory is like a workspace for the information and program instructions that are being used by 
the computer.  The Central Processing Unit (CPU) is the component that actually does the work.  
The CPU performs all of the program instructions, sends commands to devices, and receives 

information back from those devices.  Just like memory, something needs to regulate which 
devices and applications get to use the CPU, and for how long.  This task is handled by the 

operating system. 
 
Most modern CPUs and operating systems can handle multitasking and multithreading.  That is, 

they can run more than one application at a time and they can process threads from more than 
one device and application at a time.  However, the CPU has limited resources.  It needs a 

schedule of processes to carry out, or nothing will run properly. 
 
In older operating systems, it was up to each 

application to determine how long it needed to use 
the CPU and what priority it should be given over 

other applications or interrupts from devices.  This 
was called cooperative multitasking.  Unfortunately, 
this system was rather like having roads with no 

traffic laws or police officers.  If someone wanted to 
take complete control and cut off all other traffic, it 

was possible.  Newer operating systems use 
preemptive multitasking.  That is, the operating 
system sets out the rules for the use of the CPU and 

enforces those rules.  Preemptive multitasking 
means that the operating system shares the CPU 

between everything that needs its attention.  It also 
gives priority to certain devices and applications 

based on how critical they are to keeping the whole 
system functioning. 
 

Word

Applications

Microsoft 

Outlook

Adobe 

Acrobat

Internet 

Explorer

Figure 2.7
An operating system shares

the CPU between applications
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The Process Table 
 
As previously discussed, processes need to share the 

CPU.  Sometimes the CPU does not complete an 
entire process before the operating system tells it to 
start working on another one.  This system of 

sharing is what makes multitasking possible.  
Keeping track of all of the processes is done with the 

Process Table.  The Process Table lists all of the 
processes that are currently being run, those that 
are waiting to be executed and those that have been 

temporarily suspended.  It also keeps track of the 
current status, or state, of each process.  This allows 

the CPU to restart those processes again when they 
are needed.  Figure 2.8 (right) shows processes from 
the Windows XP process table, as displayed in the 

Task Manager.  We will take a closer look at 
processes and process management in Unit 3.    

 
 

 
 

 

Memory Management 
 

Memory is used by a computer to temporarily hold data and 
instructions that are being used by applications, the operating 
system and hardware devices.  Since a typical computer has 

between 1 and 4 GB of memory (RAM), and since modern 
operating systems can run many devices and applications at the 

same time, there is a lot of memory to keep track of.  As we 
noted in the previous chapter, RAM is divided up into small 
spaces (usually 32 bits).  Each space has its own address.  An 

operating system must be able to keep track of all of those 
memory addresses and how they are currently being used.  The 

operating system typically performs three major functions with 
respect to memory management: 

 
1. Gives memory to each application and device as needed; 

 

2. Protects applications (and their data) from each other; 
 

3. Protects the system from ‗bad‘ applications (that might 
try to use too much memory, or corrupt data from other 
applications); 

 
We will take a more detailed look at how operating systems 

manage memory in Unit 4. 

Figure 2.8 
The Windows XP Task Manager showing 

processes from the process table 

Windows

Word

Internet Explorer

Internet Explorer

Unused

RAM

Figure 2.9 
An operating system shares 

memory between applications 
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Peripherals 
 
Peripheral devices are hardware devices that are connected to the computer by connection ports 

on the motherboard.  Examples include the monitor, keyboard, mouse, webcam and printer.  
Peripheral devices are difficult to program and manage.  Although many different applications 
need to use peripheral devices, the task of accessing them is simplified by the operating system.  

Applications do not directly access peripheral devices.  These devices are programmed and 
controlled using device drivers provided by the operating system.  When an application needs to 

use a device it talks to the device drivers.  The device drivers then tell the device what to do. 
 
When a new device is installed, the operating system looks for built in 

device drivers or adds new drivers to control the device.  Most newer 
operating systems and devices are Plug and Play compatible, which 

means that the operating system will handle everything related to 
installing the new device and its drivers without any action from the 
user (other than confirming installation options). 

 
We‘ll take a closer look at Input/Output management in Unit 5 

 
 

File System 
 

Your computer contains more than 
just your hardware resources.  It 

also contains all of the information 
that you use and manipulate.  This 
information is stored on your hard 

disk, CD/DVD discs, and removable 
storage devices.  Your operating 

system controls the actual physical 
operation of these storage devices.  
It also helps you to manage the files 

stored on these devices. 
 

Different operating systems use 
different file systems to encode and 
organize your information.  For 

example, older versions of Windows 
used either FAT16 or FAT32 (FAT 

stands for File Allocation Table).  
These older file systems limited the 
amount of information you could 

store on a hard disk, so newer 
versions of Windows (XP, Vista, and 

Windows 7) use NTFS (New Technology File System).  NTFS lets you store up to 2 Terabytes 
(TB) of information on a single volume and provides greater file security than the older FAT file 
systems.  Other operating systems use different file systems such as EXT3 for Linux, or HFS+ 

for Mac OS X. 
 

Regardless of which file system an operating system uses, the operating system must perform 
certain key file management tasks for the user: 

Figure 2.8 
The Windows XP Task Manager 

Showing processes from the process table 

Figure 2.10  
Windows Explorer is a tool for viewing 

and navigating your computer’s file system 
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 Manage the storage and retrieval of information; and 
 
 Provide a common, easy to navigate system for viewing and accessing storage devices 

and the information stored on them. 
 

We‘ll take a closer look at file system management in Unit 6 
 

 

Unit Summary 
 
Computerized devices need an operating system to control the actual functioning of the device.  

Whether the device is a personal computer, mobile phone, or computerized aircraft controls, an 
operating system must provide some way for the user to interface with the device.  Modern 
operating systems use a graphical user interface approach to simplify access to applications and 

hardware resources.  Operating systems act as one layer in the functioning of a device.  Other 
layers include the hardware, applications and the user.  It is possible to install more than one 

operating system on a computer, which creates multiple sets of layers (however, only one of 
these sets of identical layers can operate at any given time).  It is also possible to use 
virtualization to simulate the use of two different operating systems at the same time.  

Regardless of which operating system is being used, there are similar tasks that the operating 
system must perform.  The primary tasks performed by the operating system include the 

management of CPU scheduling and tracking processes, memory management, management of 
Input/Output systems and file system management. 
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Unit 3: Processes 
 

Processes and Multitasking 
 
Many people like to try to speed up several tasks by performing them at the same time, such as 
using a mobile phone while driving.  While this seems like you are accomplishing two things at 

the same time, the truth is that your brain specifically focuses on just a single task at any 
specific time.  The act of talking only occurs while you are not actively making decisions about 

the task of driving. To put this into perspective, if you know you are about to have an accident, 
you will stop talking. 
 

To further illustrate the idea of performing simultaneous actions consider the problem of reading 
a text message while watching TV.  Your eyes can only look at one device at a time. You must 

switch back and forth between the two devices, or look at the mobile phone only while 
unimportant things are happening on the TV. 
 

A CPU inside a computer is simply a high speed calculator that can perform relatively simple 
operations on a set of data.  If we ignore for the moment the idea of dual and quad core CPUs, 

the CPU can only process a single instruction at any given time from a program.  If we would 
like to have more than one program executing on the processor at the same time, the programs 
will need to take turns using the CPU.  Since the computer switches back and forth between the 

two programs often enough, then it will look like both applications are running at the same time. 
 

This unit takes a detailed look at the definitions of processes and threads, and how the operating 
system manages processes and threads in multitasking environments.  The first section deals 
with the definition of a process, and the concept of process states.  We then take a look at state 

changing, process creation and stopping processes.  From there, we compare processes to 
threads, and take a look at why threads are important.  This is followed with a detailed look at 

inter process (and inter thread) communication, including process synchronization, memory 
sharing, the use of signals (or semaphores), critical sections, and the use of message queues.  
We conclude by looking at how an operating system actually handles process scheduling.  This 

will include topics like completion scheduling, round robin scheduling, priority-based scheduling, 
and scheduling in multi-core/multi-processor environments. 

 
 

Process 
 

Definition 
 

In order to manage individual applications (or what we often refer to as programs) most 
operating systems use the term process.   An application or program is a set of instructions.  A 

process is the actual execution of those instructions, along with the memory and I/O devices 
assigned to execute the given instructions. 
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State Machines 
 

Without the need to switch from one process to the next, the creation of an operating system is 
significantly reduced.  In fact, many embedded systems that have no multi-tasking often do not 

include an operating system for cost reasons.     
 
If we consider the act of attempting to read a text message while we are driving, we know that 

the driver will only take their eyes off the road when the traffic appears to be under control.  The 
driver will then quickly look at some of the text on the mobile phone and then return to looking 

at the road.   This process will continue as long as there are text messages to be read or places 
to drive to. 
 

If we draw a small diagram showing these two actions we have something like this: 
 

Mobile

Road looks okay

We heard a horn/screeching 

tires or we looked at the 

mobile long enough

Road

 
 

Figure 3.1 
Example of a simple state machine 

 

This diagram shows that we start off by watching the road and when we feel that the road 
conditions look okay (no cars or pedestrians) we then look at the mobile phone.  We then read 

the message on the mobile phone until one of two things occurs:  
 

1. We hear something that needs our attention such as some screeching tire or we notice 

something in our peripheral vision.   
 

2. We have been looking at the mobile phone for some time and realize that we should 
probably see if we are about to hit something. 

 

Figure 3.1 (above) is used in many computer design documents and is called a state machine.  
The circles represent the state of the machine and the arrows represent actions that cause us to 

change from one state to another.  In the case of our texting driver, there are two states: 
looking at the road, or looking at the mobile.   Although it may be possible to hold the phone in 
such a way that the peripheral vision encounters most of the road, it remains a fact that you 

cannot actually look at both the phone and the road at the same time.  Regardless of the opinion 
of texting while driving, a single core CPU can only perform one instruction at a time which is the 

whole reason for describing this analogy.  The important thing to take away from this analogy is 
that some things in life are modeled really well by state machines and that events can cause 

some resources to change from one state to the next. 
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Computer Process 
 

We now return to the world of computers and processes again.  The fact that a single-core CPU 
can only process one instruction stream at a time means that two applications must take turns 
running on the CPU.   Although a rather obvious statement, if we consider just one single 

process we realize that it must be either running or is must not be running.   This sounds 
suspiciously like a set of states.  In addition to two states, the next question that should be 

asked is how does a process go from ‗not-running‘ to the ‗running‘ state? 
 
We will call the ‗not-running‘ state the ‗Ready‘ state because it indicates that the process would 

like to run but currently cannot (suggests that some other process is actually running).   We will 
also introduce two new terms: 

 
 Dispatch – means that the operating system has decided that the process should start 

running now. 

 
 Interrupt – means that the operating system has decided that the process should now 

stop running so that another process can have a turn. 
 

Putting all of this information into a single state diagram produces this version. 
 

Running

dispatched

interrupted

Ready

 
 

Figure 3.2 
A computer-based simple state machine 

 
 

Many operating system students see diagrams such as this and easily understand the concept, 
but many textbooks fail to remind the students that there are in fact probably several processes 
(each with their own state machine) going at the same time. 

 
The operating system would normally keep a list of all processes current loaded in a table known 

simply as the process table.  The process table would need to keep the current state value.   So 
if an operating system were running four programs (Word, Internet Explorer, Excel, and Visio) 
the table might look like this: 
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Process ID Name State 

4 Word.exe Running 

6 IExplorer.exe Ready 

7 Excel.exe Ready 

8 Visio.exe Ready 

 
Figure 3.3 

A sample process table 
 

At no time would it be possible to have two processes both with the state ‗Running‘ as we are 
assuming for now that the CPU has only a single core. 
 

 

Processor Preservation 
 

An important concept in operating system design is the ability to hide multi-tasking concepts 
from the applications so that they do not know that other applications are running at the same 

time and sharing the CPU. 
 
The registers in the CPU become a resource that is shared by every process on the operating 

system, including the operating system itself.  Keeping these values correct is critical to making 
an operating system that functions correctly.  As an example if one application performs the 

instruction ―mov $50, %eax‖ it means that the program expects the value 50 to be placed into 
the EAX register.  If this instruction were executed then another process ran that put the value 0 
into the EAX register, the old value of 50 needs to be replaced before the first process runs 

again. 
 

Each process on the system requires a place where the registers can be stored while the process 
is not running.  The operating system can either put this information directly into the process 
table or it can store the information somewhere else but keep a pointer to the information in the 

process table.   
 

 

State Changing 
 

Changing the state of a process from one state to another is usually the responsibility of the 
operating system.  The actual switch could occur because the process has informed the 

operating system that it is finished, or the operating system could determine that the process 
has simply used too much time and it is another process‘ turn to run. 
 

Of course, the operating system itself is software that must run on the CPU along with the 
applications.  So how does the application actually become active so that it can stop Word in the 

example above?  Many hardware platforms include a clock that periodically fires interrupts and 
the operating system has likely attached a function called a scheduler to the interrupt so that 

every so many milliseconds (a typical number is 10 ms) the operating system scheduler gets 
executed. 
 

When the scheduler is called (by the interrupt) the scheduler code can manipulate the process 
table and set the state of the processes involved and then allow the new process to take over. 
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As an example suppose that the process table looks like the example above with the four 

processes and Word.exe executing.  Here is the order in which things happen. 
 

1. The word process is executing normally using the CPU registers as it requires. 

2. The clock triggers an interrupt. 
3. The interrupt service routine attached to the clock runs the OS scheduler. 

4. The scheduler searches the process table for the process in the Running state. 
5. The scheduler changes the state of the running process to ―ready‖.  

6. The scheduler copies all of the current value of the registers into the process table (or 
information block) 

7. The scheduler looks in the table to find the next process to run.  The topic of selecting a 

process to run is covered in the next chapter but for here let‘s assume that iexplorer is 
about to run. 

8. The scheduler marks iexplorer as ―Running‖ 
9. The scheduler copies all of the registers for iexplorer into the CPU from the process table. 
10.The scheduler then jumps to the next instruction that iexplorer should perform. 

  
 

Preemptive and Non-preemptive Switching 
 

The steps above describe a type of process switching known as preemptive switching.  The 
operating system always has control of the computer by way of the interrupt service routine and 

will always be able to stop the currently executing process.  
 

In a non-preemptive operating system, the operating system never interrupts the currently 
executing process but waits for the process to release control voluntarily.  In such a system, the 

operating system is generally less complex.  However, if a process does not wish to cooperate 
with the other processes on the computer then this could lead to other processes, including 
some operating system parts, never having a chance to execute. 

 
The most recent popular non-preemptive operating system was Windows 3.1.  In this operating 

system, a programmer who accidentally created certain types of infinite loops would often have 
to reboot their computer in order to stop their program.   As a result, most operating systems 
today utilize preemptive process switching so that no single process can monopolize the 

computer. 
 

 

Blocking 
 

Generally the CPU executes instructions very quickly and transferring data to and from RAM also 
takes place with very little delay.  Unfortunately, if a process wishes to interact with some 
external device the CPU cannot do very much useful work. 

 
As an example, suppose we have written a very simple program that does nothing until the user 

presses a key on the keyboard.  The computer instructions may look something like this: 
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Main() { 

 System.in.read(value); 

} 

 
When this process is started, there will be some instructions required to get the application 

ready, but eventually the instruction ―wait for key‖ is reached.   When the process reaches this 
instruction what does the operating system do with the process state?   In our two state process 
model introduced earlier (see Figure 3.2), leaving the process as ‗Running‘ is probably not a 

good idea because it really is not doing anything.  Moving the process to the ‗Ready‘ state does 
not help either because the process is not actually ready to run.  It needs to wait for the user to 

do something. 
 

We solve this problem by the introduction of a third state that we will call ‗Blocked‘.   This state 
tells the operating system that the process is currently waiting for something, and therefore it 
should never be considered by the scheduler when a new process is being selected for running.   

The term blocked exists because the execution is being ―blocked‖ by some external event.  
Some operating systems might use the term wait. 

 

Running
dispatched

interrupted
Ready

Blocked

waitEvent complete

 
 

Figure 3.4 
A state machine with a blocked state 

 

In this model, a process can never become blocked unless it is actually running.  Once a process 
has been put into the blocked state, it must eventually be unblocked or released and put back in 

to the ‗Ready‘ state before it can run again. 
 
How does the operating system manage these extra state changes?  As mentioned in the earlier 

sections of the book, the operating system is responsible for managing all system resources 
including I/O devices.  In the case of waiting for the user to press a key, the program actually 

issues a request to the operating system (through a function call) asking to wait for a key.  In 
response, the operating system changes the state of the process to ‗blocked‘ and runs the 
scheduler algorithm to find a new process to run. 
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How does the process get out of the blocked state?  Each I/O device has its own mechanism that 

it uses to interact with the operating system.  We will consider just the keyboard example here.  
During boot up, the operating system has probably attached a service routine to the keyboard 
interrupt.  Each time that the user presses a key, it generates an interrupt which causes the 

operating system routine to generate a key event and the scheduler routine will be called.  The 
scheduler will then look through all of the blocked processes waiting for key events and the state 

will be changed from blocked to ready.   Whether this keyboard interrupt causes the currently 
running process to be moved from Running to Ready depends on the operating system itself. 

If you were to examine the states of processes on most computers, you will probably find that 
just about every process on the system is blocked most of the time. 
 

Having a lot of blocked processes is a good thing.  This means that the CPU is not actually being 
used for any useful work.  Normally when a CPU does works it consumes power, while if it is not 

doing work it can be put into a low power state.  Tricks such as these are used in mobile devices 
such as phones in order to extend the life of the battery.  A process that is actively using the 
CPU will consume more power, which is why batteries do not last as long when you are watching 

videos on your mobile phone than when you are simply on stand-by waiting for calls. 
 

 

A Typical State Model 
 

There are two additional states that most operating systems include in addition to the Ready, 

Running, and Blocked states.  These two extra states are used for house keeping, and only exist 
for a short amount of time during the creation and the removal of processes. 

 
When a new process is created there needs to be a new entry placed into the process table.  

Setting the process table entry actually takes a bit of time.  If the new process was marked as 
‗Ready‘ and the operating system was in the middle of initializing the other columns in the 
process table, and suddenly a reschedule operating occurred, how would the operating system 

know that it should not select this new process?  We control this by the introduction of a ‗New‘ 
state.   This is simply a place holder that is used by the operating system until the process is 

actually ready to start going. 
 
Similarly there is an ‗Exit‘ state that is used when a process is being cleaned up.  This state is 

also temporary, and the operating system will mark the process first then remove it from the 
process table. 

 

Running
dispatched

interrupted
Ready

Blocked

waitEvent complete

New Exit
terminatecreated

 
 

Figure 3.5 
A typical state machine 
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Switch Prevention 
 

There may be situations where a process is in the middle of doing something really important 
and it would like to ensure that no other process is allowed to run in the meantime.  There are 

two mechanisms that are typically available: disabling the scheduler and disabling interrupts.  By 
disabling the scheduler the process is requesting to the operating system that even if the timer 
fires, the process would like the operating system to skip the selection of a new process.   In the 

case of disabling interrupts, the program is actually asking the CPU to ignore any interrupts that 
occur. 

 
Both of these techniques have the ability to seriously hinder the functionality of the computer.  
As such, most operating systems will refuse to comply with such requests unless the programs 

doing the request have enough privileges.  However, some parts of the operating system itself 
are very vulnerable to interruption and the operating system itself is allowed to prevent 

switching and even interrupts if required.  How privileges are enforced is a topic for later 
discussion. 
 

 

Process Creation 
 

The actual creation of a new process on a computer is very specific to the operating system itself 
and is often tied very closely to the hardware.   We will attempt to describe the creation of 

processes in a high level view. 
 

Most operating systems utilize a process table to track all of the processes currently residing on 
the system.  The creation of a new process will usually require a new entry to be created within 
the process table.   During the addition of the new entry, the table needs to be locked or 

switching needs to be prevented so that the full details can be added without interruption.  
Marking the state as ‗New‘ is only part of the problem.  The table itself might have issues if the 

scheduler sees it partially updated. 
 

In addition to the process table entry, most operating systems keep information about the 
process in a separate space called the ―process information block‖ (although this can be viewed 
as part of the process table).   The space for this process information block needs to be set aside 

as part of the process creation step. 
 

Each process will be executing some code.  Part of the process creation step will be to set aside 
enough memory for the code, and then possibly load the code from the executable (some 
operating systems work a little differently as explained next). 

 
 

Process Creation in Unix/Linux 
 

In the Unix (and Linux) operating system, new processes are created by a simple system call 

named ‗fork()‘.   The term fork comes from the description of hitting a fork-in-the-road, in other 
words a place where a decision has to be made.   It is easily shown by this diagram. 
 

Suppose a program has the following statements: 
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Statement_A(); 

 Statement_B(); 

 Statement_C(); 

 Fork(); 

 Statement_D(); 

 Statement_E(); 

 Statement_F(); 

 
If the fork() call was not included it is easy to see that the program simply executes the 

statements one at a time.  However with the inclusion of the fork() command, things get a bit 
more interesting. 

 
When the system called is made at fork(), the 

operating system will actually duplicate the 
current process so that there are now two.  
This means that the original process will keep 

running statements D through F, but there will 
also be another process also running 

statement D through F. 
 
When a Unix program issues the fork() 

system call, the operating system duplicates 
the current process exactly and once 

completed there are now two processes 
executing that look identical.  However, they 
will be two distinct processes sharing the CPU.  

Any variables (memory) associated with one 
process will be different than the memory 

associated with the other process. 
 
Who issues the fork command?  Most 

applications that developers write would never 
use the fork system call unless they were 

trying to create a program that starts another 
program.  In fact the fork() system call 
remains a mystery to most software 

developers, so if you never see it again 
outside of this text, that would be quite 

normal.   When you are working in the 
GNOME desktop environment, you select 
applications from a launch menu.  When you 

finally select OpenOffice Write, guess what 
happens?  Yes, GNOME will issue a fork() 

system call. 
 
If you are comfortable with the idea of the 

fork() system call, you should now ask the 
question: ―If GNOME issues the fork() call, 

why then do we see OpenOffice Write instead 
of another copy of GNOME?‖.   As soon as the new process is created the second process will 

replace its current executable code with new code from the drive. 
 

Statement_A

Statement_B

Statement_C

Fork()

Statement_DStatement_D

Statement_EStatement_E

Statement F Statement_F

Figure 3.6 
A program issuing the fork() command in Unix 
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The source code for launching a new application then typically looks like this: 

 
Main() 

{ 

 While (true) { 

  Display prompt on screen 

  Wait for user to enter command (i.e. block!) 

  If command is a shell command process the command (i.e. set, echo) 

  Assume the command is a program, check if the program exists. 

  Fork() a new process. 

  If (we are original process) { 

   Wait for new program to finish 

  } 

  Else { // we must be the new process 

   Load the program and run it 

  } 

 } 

} 

 

 

Stopping a Process 
 
There are three typical ways that a process will terminate and release the memory back to the 

operating system: 
 

1. The process can request the operating system to stop itself.  This is actually accomplished 

when the ―main‖ member function of most programming languages finishes.  The 
programs that you write are actually linked with some library functions to look after 

making the system call for you.    Generally an application will always have permission to 
terminate itself. 

 

2. The process could generate an unmanaged exception.  An exception is simply an error 
that has occurred that cannot be dealt with by the program.  Examples of exceptions 

include division by zero and the process trying to perform an instruction that is not 
permitted by the operating system.   You have likely seen the failure on Windows which 
states something like ―This program has performed and illegal operation‖. 

 
3. One process can request that another process be terminated.   Most operating systems 

provide some form of security to prevent processes from terminating other processes 
unless the originating process has some sort of privilege.    In Linux, the kill system is 

used to send a variety of messages including a message to terminate a target program. 
 

 
Threads 
 
Although on a CPU with a single core it is not possible to execute more than one instruction at 

the same time, there are often reasons why a programmer would prefer to structure a program 
in such a way that it is really programmed more like two or more separate programs.    Take for 

example the program Outlook.  We are all familiar that when using Outlook, you can be in the 
middle of creating a mail message and even while you are writing the message, a new mail 
messages can arrive causing Outlook to play a sound and show the arrival flag in the tool tray. 

 
One way that the program could be organized is in the following pseudocode: 
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Forever(;;) { 

 Wait for a single key 

 Add the character to the message 

 If there is a new message raise flag and play sound 

} 

 

The pseudocode above is valid but not really efficient.  Notice that the algorithm only checks for 

new mail every time that a key is pressed.   On the positive side, it is expected that the program 
will not be very intensive on the CPU because it will spend a great deal of time waiting for the 
keyboard. 

 
In order to solve the problem of only checking after each key is pressed we could change the 

algorithm as follows: 

 
Forever(;;) { 

Wait up to 1 second for a new key 

If a key was pressed add it to the message 

If there is new mail, raise the flag 

} 

 
This approach solves the problem of only checking for mail every time that the user is present, 
but it comes at an expense of efficiency.   If a user starts to type a message and then leaves for 

several hours, the program will wake up every 1 second and see if there was a key pressed and 
check to see if there is mail.  It would be more efficient to do neither if nothing is happening. 

 
A second point about this solution is that as we add more features to our e-mail program, this 
main loop becomes more and more complex. 

 
If we are able to organize the program into two tasks, each solving just one problem, then we 

could have the following: 

 
While (!messageNotSent) { 

 Wait for key 

 Add character to message 

} 

 

And 
 

Forever() { 

 Sleep 10 seconds 

 Check for mail 

Raise flag if new mail 

} 

 

If both of these small algorithms can run at the same time within the same application then we 
have organized our program into a much easier to understand system, and in a way that adding 

more features can be easier. 
 
Now that we have a model to help make the program easier to create, we need a mechanism by 

which a program can be organized.   These two independent mini-programs have their own set 
of instructions that need to be executed on a single processor.  This concept sounds very similar 

to multi-processing that was covered in the previous chapter, only in this case these mini-
programs are actually part of a single large application. 
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In an operating system a single sequence of instructions being executed is called a thread.  

Every process will always contain at least one thread of execution unless it has been written in a 
special way such as what we have described for our e-mail program.  In our application we have 
one thread whose task is to read the keyboard and compose the message, and another thread 

responsible for occasionally checking to see if there is new mail. 
 

Because there are now two separate threads of execution, there will need to be the concept of 
switching and scheduling within our application.  Luckily, a lot of operating systems look after 

this as part of their services, and the way they function is nearly identical to process switching. 
 
In addition to making certain types of programs easier to create, a second advantage of using 

multiple threads arises when a processor with more than one core is used (dual-core, quad-core, 
etc.).  If a program is created that equally divides a lot of work into four separate threads, then 

running the application on a quad core processor will make that application run four times faster.  
The art of developing programs this way is the topic of a full course. 
 

 

Why threads? 
 

Performing a quick search on the Internet or looking at most textbooks will often provide the 
description that a thread is a ―light-weight‖ process.   It is starting to appear that processes and 
threads are almost interchangeable terms.    If you recall one from the section on the overview 

of an operating system, most operating systems have a responsibility of protecting one 
application from another application (if Internet Explorer crashes it should not cause Word to 

crash or lose data).  As a result, having two processes communicate or share information is a bit 
complex due to the security.   However, within a single application there is usually no such 

protection between threads.  As a result, it is often very easy for two threads to cooperate on a 
common set of data. 
   

If the lack of protection between threads sounds like it is a bit risky, then you are completely 
correct!  Improperly designed applications that rely on multiple threads can result in very 

difficult to solve problems that only sometimes occur.  With multiple threads, the scheduler is 
still allowed to select any thread to run that is ready and this means that if you run a multi-
threaded program ten times, it might actually run ten different ways (sometimes one thread 

might get more time at the start).  This is often why a program might work fine today, but might 
crash unexpectedly tomorrow.   Multi-threaded programs written correctly have a great 

advantage but it takes the right type of programming design and testing to remove bugs. 
 
In many life critical systems such as medical equipment or avionics systems, and even high 

demand systems such as telephone equipment, the design team will often avoid using more 
than one thread to reduce unpredictability at the cost of increasing the complexity of the code. 
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Inter Process Communication 
 
The term inter process communication refers to information being exchanged between two 

processes.  Although the title of the section seems to suggest that the techniques described here 
are only for processes, they actually work equally for multiple threads within a single process. 

 
When two or more threads (regardless if they are in the same process or not) are trying to 
cooperatively work on a solution to some problem, they need some sort of mechanism to 

exchange information so that they can decide which part of the problem will be solved by which 
thread, and to ensure that they do not both try to work on a single part of the problem at the 

same time.   There may be other situations where one thread would like to wait for the other 
thread to finish first before continuing on.   All of these cases require some sort of 

communication so that the two threads can coordinate. 

 
 

Synchronization 

 

We will start with a very simple task.  Suppose that we have two threads (again, if they are in 
the same or different processes the same problems exist) as follows: 

 
threadA() 

{ 

system.out.print(“Thread A”); 

sysmtem.out.println(); 

} 

threadB() 

{ 

 system.out.print(“Thread B”); 

 system.out.println(); 

} 

 
Suppose we were to start the threads at exactly the same time (this is not actually possibly by 

the way…why?).  The result should be that both messages will appear in the output window.  
The question that has to arise however is which message appears first?  Does it look like this? 

 
Thread A 

Thread B 

 

Does the result look like this? 
 

Thread B 

Thread A 

 

Does the result look like this? 
 

Thread A Thread B 

 
Unfortunately, with the information provided the output is actually unknown!  This type of 
solution is called non-deterministic because we cannot predict (or determine) what will happen 

every time.  In fact every time that we run the program we might see a different result. 
 

Why do we end up with so many possible results?  It looks like in the first example the first 
thread got to run completed, then the scheduler switched to the second thread.  In the last 
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example, the first thread got to run but was not completed (it did not make it to the println() 

function), then threadB ran and then threadA finished.  Non-deterministic solutions are 
extremely dangerous in critical systems where people‘s lives are at stake. 
 

Unfortunately we did not actually say what the desired output should actually look like. Let us 
suppose that we want the output to be in the order of ―Thread A‖ followed by ―Thread B‖ on the 

next line, and we want to be guaranteed of this order, regardless of what else possibly happens.   
This suggests that we need some mechanism of making sure threadB waits for threadA to finish.   

As always, we would like to try to minimize the amount of CPU time actually used.  This first 
thing we will talk about is called synchronization. 

 

 
Shared Memory 

 

Our first technique that we will try to introduce is the concept of shared memory.  This is a very 
simple to understand concept but, unfortunately, not a very good method in most cases. 

 
The term shared memory means that both threads have access to a piece of memory that they 

can both read and write to at the same time.  If one thread puts a value into the memory 
location, then when the second thread looks at the memory it will see exactly the same thing.   
Of course, unless the two threads are executing on a multi-core processor, there will only be a 

single thread executing at a given instant.   Configuring a variable to be shared between two 
processes on an operating system is usually possible.  However, it is not particularly easy due to 

the security.  The creation of shared variables between two threads of the same process is 
generally easy (in fact, too easy because a lot of mistakes are generally made by assuming). 
     

For the purpose of discussion we will assume that there is a variable called ―turn‖ which is a 
simple integer that is available to both threadA and threadB.  We will assume that the sharing is 

already set up.  Now consider the following pseudocode: 

 
Configure shared variable turn 

Turn = 1 

Start threadA 

Start threadB 

 
You might jump to the conclusion that threadA will be ahead of threadB because we asked it to 
start first.  Keep in mind that the scheduler is responsible for picking the order.  Just because 
you asked to start A first does not mean it actually had a chance to run!  Now let‘s try to modify 

the two threads to make use of the ‗turn‘ variable to make sure that threadA runs first then 
threadB. 
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threadA()  

{ 

 System.out.print(“Thread A”); 

 System.out.println(); 

 Turn = 2 

} 

threadB() 

{ 

 While (turn == 1) 

  ; 

 System.out.print(“Thread B”); 

 System.out.println(); 

} 

 

Let us take a quick look to see if this actually does what we want.  Notice that we started by 
setting the shared variable called turn (both A and B can see this) to the value 1.   When 

threadA is finished it sets the value to 2.   If we look at threadB() we see that it looks at the 
value of turn and if it is equal to 1 it does nothing, but we expect that eventually threadA will 

finish and the value will be set to 2, allowing threadB to execute. 
 
This is good; this provides us a way that allows the two threads to synchronize.  It does not 

matter if threadB gets to run for ten minutes before threadA even starts, because it will do 
nothing until threadA is finished.  The variable called turn is an example of a synchronization 

variable. 
 
Although this solution works, it does pose a bit of a problem.   Look again at threadB, we see 

that it starts with a loop that continuously checks the value called turn.   Now if threadB were to 
run for five seconds, would the value of turn ever change?  Of course not, it is threadA that 

changes it.  This type of checking is called polling and burns a lot of CPU time, which may 
consume more power from our battery (or may just cause the processor to heat up for no 
reason).    

 
 

Self-Yield 
 

A better option would be to have threadB look, and if the turn variable is not set then it should 

voluntarily go into the blocked state.   Moving into the blocked state would allow the scheduler 
to run the other thread.   We will introduce a new command called ―sleep‖ which causes the 
current thread (and possibly process) to go into the blocked state until a certain amount of time 

has passed. 

 
threadB() 

{ 

 While (turn == 1)  

  Thread.sleep(5000); // sleep for 5000ms or 5 seconds 

 System.out.print(“Thread B”); 

 System.out.println(); 

} 

 

This code is much better for the CPU because now even if threadB runs first, it will immediately 
go into a blocked state and will wake up only every five seconds to see if the turn variable has 

been set.  Therefore, even if threadA takes hours to complete, at least threadB is not using too 
much CPU time.  Of course there is still a bit of a problem with this solution.  Suppose that 

threadB executed and saw that the turn variable was still 1 and went to sleep for five seconds.  
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Then threadA ran and set the value turn value one second later… threadB would only wake up in 

another four seconds to see if the variable was set.  This means that our problem has been 
slowed down because threadB was asleep.   You may be tempted to reduce the amount of 
sleeping time but this means that threadB will wake up more often and use more CPU time.   A 

better option would be to have threadA actually wake up threadB when it is finished. 
 

 

Signals or Semaphores 
 

A signal (or semaphore) is a special type of variable supporting two operations called wait and 
raise (when using the term semaphore the operation names are usually take and give).   

Because the term signal is used in Unix to mean something critical has occurred (such as a 
crash), we will avoid using the term signal here.  However, keep in mind that many books use 
the terms interchangeably.    Semaphores can be used in a number of ways, but the first thing 

that we will consider is using them for synchronization. 
 

The two operations are: 
 

1. Take: When a thread asks to take a semaphore, either the thread is given immediate 

control because the semaphore is available or else it goes into a blocked state waiting for 
the semaphore to become available.  As soon as the semaphore is made available (usually 

by some other thread) the requesting thread will be immediately woken up. 
 

2. Give: When a thread gives a semaphore it is potentially waking up another thread that is 

waiting. 
 

We turn back to our example of the two threads again and consider the pseudocode to get 
things started: 

 
 Create a semaphore variable called ―turn‖ 
 Make sure the semaphore turn is not available 

 Start threadA 
 Start threadB 

 
Now we change the thread code slightly: 

 
threadA() 

{ 

 System.out.print(“Thread A”); 

 System.out.println(); 

 Turn.give(); 

} 

threadB() 

{ 

 Turn.take(); 

 System.out.print(“Thread B”); 

 System.out.println(); 

} 

 
We had changed our startup code to indicate that we need to actually create the variable called 

turn.  We have also included an instruction to make sure that the semaphore is not actually 
available to start.  This is very important.  We want to make sure that the ―give‖ instruction in 
threadA is the one that makes the semaphore available. 
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When threadB starts it will try to take the semaphore.  If the semaphore is not available, the 
operating system scheduler will move the thread (and possibly the process) into the blocked 
state.  While in this blocked state, the thread (and process) will consume no CPU.   When 

threadA finishes its tasks, it will give the semaphore and the give operation will cause the 
operating system scheduler to wake up the blocked thread and make it as ready. 

 
The creation of these semaphores is very specific to each operating system, and there are often 

a lot of options available for dealing with very complex problems.  As an example, suppose there 
are two threads waiting on a single semaphore.  Which thread gets the semaphore when it is 
given?  You will probably have an opinion of this immediately by saying the first thread to ask 

should receive it, but perhaps the second thread was actually much more important.  The 
options provided for the semaphores can be used to control specific behavior depending on the 

needs of the application.  Another issue that we are deferring to the section on scheduling is how 
long does threadB wait?  In our particular example we probably want to wait until threadA is 
finished, regardless of how long it actually takes.  In some programs waiting a really long time 

might not be the right answer, and often the semaphore take operations allow for an alarm clock 
to wake them if the semaphore is not actually given.  Of course what you do when you wake up 

from an alarm, rather than actually receiving the semaphore, is very specific to the problem at 
hand.  It is impossible to suggest in this text how to properly handle the situation. 

 

 
Critical Sections 
 

A critical section is a part of code (or more often a set of variables) that must be accessed in a 
controlled way when dealing with a multi-threaded system.   Again, as previously mentioned, it 

does not really matter if the multiple threads are within the same process or spread across 
multiple processes.  Critical code sections are actually quite difficult to visualize, so we will start 

with a very simple example and build up a solution technique.  We will then introduce some 
more typical programming requirements. 
 

Suppose again that we have two threads which we will call threadA and threadB.  This time both 
threads are responsible for doing some long calculation (the actual calculation is not relevant), 

and once the calculation is finished then each thread prints some information on the screen.  We 
will add some additional complexity to cover a new topic. 
 

threadA() 

{ 

 Long calculation 

 System.out.print(“Thread A is finished: “); 

 For (I = 0; I < 10; i++) { 

  System.out.print(i); 

  System.out.print(“ “); 

 } 

 System.out.println(); 

} 

 
Let us assume that threadB looks identical except for the message ―Thread B is finished: ―.  

Although these examples are nonsense, they are easy to describe and introduce the concept of a 
critical section of code. 
 

First we consider what happens when we run threadA without adding threadB to the mix.  This 
thread will perform some long calculation and then print out the numbers 0 through 9 on a 
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single line with a space between each.   The behavior of the program is really quite simple.  

However, if we now launch both threads at the same time we might end up with the scheduler 
switching back and forth several times.   The result could look something like this: 
 

Thread A is finished: 0Thread B is finished: 0 1 2 1 2 3 4 5 6 7 3 4 5 6 7 8 8 9 
 

9 
 

We have marked the output from threadB using italics so that you can see what is happening.   
The problem is that the scheduler keeps switching back and forth between the two threads while 
they are printing to the screen.   This is quite common.  Most operating systems will take an I/O 

request as a chance to reschedule the threads or processes.  Unfortunately, there are no actual 
guarantees of when the rescheduling will occur.   Our goal for this small program is to make 

sure that the output does not get mixed up.  The problem is that all of the output statements in 
our threads are part of a critical section, which means that we do not want the other thread 
interfering while we are trying to write to the screen. 

 
 

Preventing Rescheduling 
 
The first technique that we consider is having the thread/process make a request to the 
operating system to disallow rescheduling while they are performing the output.  The thread 
code then looks something like this: 

 
threadA { 

 Long calculation 

 Lock Rescheduler 

 System.out.print(“Thread A is finished: “); 

 For (I = 0; I < 10; i++) { 

  System.out.print(i); 

  System.out.print(“ “); 

 } 

 System.out.println(); 

 Unlock Rescheduler 

} 

 
By putting a lock and an unlock around the print statements we are asking the operating system 

to no do any type of scheduling operation while these statements are being executed. 
 
This solution is completely valid, and if the other thread does the same operation the outcome 

will function perfectly fine.   Again as expected, this simple approach does have some downfalls.   
Suppose that we execute the program containing these two threads but there is another 

application (such as Outlook) running on the same computer.  If the first thread requests that 
the scheduler be disabled then the other applications will not have a chance to run at all, even 
though they may have no interest in the screen.   The problem here is that the thread has asked 

that no other threads, regardless of who they are or what they want, are allowed to run. 
 

An alternative solution that might be suggested is to use a synchronization semaphore, and 
make sure that threadA runs to completion before threadB.   This is also a valid solution.  
However, one should ask if that is actually a valid requirement.   We have not provided any 

details about the length of the ―long operation‖.  Suppose that we were to implement a 
synchronization semaphore and always forced taskA to finish before taskB.  Now suppose that 

the ―long‖ calculation in taskB takes one second, but the long calculation in taskA takes 100 



Operating System Fundamentals 43 

 

seconds.  Using the synchronization variable means that taskB has to wait 100 seconds before it 

can even run.  If taskB could have run after one second maybe we should have let it. 
 
To solve the problem in the best way it seems that we should have a race between threadA and 

threadB to see who gets to the end of the long calculation first, and then once the first thread 
passes a gate we lock out the other thread.  We will start by trying to use a simple variable... 

 
threadA { 

 Long calculation 

 While (busy == 1)  

Do nothing; 

 Busy = 1; 

 System.out.print(“Thread A is finished: “); 

 For (I = 0; I < 10; i++) { 

  System.out.print(i); 

  System.out.print(“ “); 

 } 

 System.out.println(); 

Busy = 0 

} 

 

Here we assume that a simple integer variable called busy has been created and initialized to 0 
before starting.  Both threadA and threadB look nearly identical with the exception of the printed 

message.   At first glance this code looks like it is going to solve our problem.  The first thread to 
finish the long calculation will see that the busy variable is zero and will then set it to 1.  If the 
second thread comes along it will see that the busy flag is 1 and will wait for the other thread to 

clear it.  There are two problems with this solution.  The first problem is the while loop which is a 
form of busy waiting, this burns CPU time.   The second problem which is much more important 

is that the solution does not actually work. 
 

Suppose that threadA checks the busy flag and sees that it is zero.  This means that the next 
instruction is the ―busy = 1‖.  But lets suppose that just as threadA is about to change the value 
to 1, that the scheduler causes threadB to execute and threadB checks the value of busy.   The 

value of busy is still 0 because nobody has set it.  The result now is that both threads are 
executing within their critical section and you will end up with a messed up output.  It looks like 

there is actually another critical section between the value of the flag checking and the setting. 
 
Let us look again at the use of a semaphore, because it allowed one task to block (without 

consuming CPU) until another thread gave the semaphore.  However, this time we are going to 
initialize the semaphore just a little bit differently.  Here is the pseudocode that starts 

everything: 
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Main() 

{ 

 Create semaphore called lock 

 Make sure that the lock is available 

 Start ThreadA 

 Start threadB 

} 

 
Now for the thread code, again threadB looks identical except for the message displayed. 

 
threadA { 

 Long calculation 

 Lock.take(); 

 System.out.print(“Thread A is finished: “); 

 For (I = 0; I < 10; i++) { 

  System.out.print(i); 

  System.out.print(“ “); 

 } 

 System.out.println(); 

Lock.give(); 

} 

 
In this case the first thread through the long calculation will take the semaphore, and the second 

thread to complete will have to wait because the first thread already took it.   The operating 
system code would have ensured that if there were critical sections in the take and give code, 
they would be protected against switches (likely by disabling interrupts).   As soon as the first 

thread gets through the critical section, the semaphore lock is given and the other thread would 
be woken up and would execute. 

 
This example of a program that does some calculations and prints some numbers to the screen 
is just meant to be an easy to understand example.  We now consider a real problem involved 

with our e-mail program. 
 

To set this up, let us suppose that an individual e-mail message is stored in a Java object of type 
EmailMessage.  Our e-mail program keeps the e-mail messages in a simple array of 
EmailMessage, and there is an integer variable called inboxCount that keeps track of how many 

messages are actually in the inbox. 

 
 EmailMessage inBox[1000]; 

 Int inboxCount; 

 
Suppose that the software developer responsible for the e-mail program has decided that if 
there are 10 messages in the inbox, they will be stored in the array in locations 0 through 9.  

New messages that arrive will always be placed in the very last position and the inboxCount will 
be increased by 1 and that the developer has created the following member function to handle 

new messages: 

 
Void newMessage(EmailMessage msg) 

{ 

 inbox[inboxCount] = msg; 

 inboxCount++; 

} 
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So we put the new message into the array at the current count position and increment the 

counter by one for the next message that comes in. 
 
Now suppose that the software developer has decided that there needs to be a function that 

removes a single message from the inbox given the ―index‖ of the message.   This code would 
likely look something like this: 

 
Void deleteMessage(int index) 

{ 

 Delete inbox[index]; 

 For (int I = index; I < inboxCount; i++) 

  Inbox[i] = inbox[i+1]; 

 inboxCount--; 

} 

 
The function operates by releasing all of the information for the message at the given location 
then shifts all the messages to the left to fill in the gap.  It then finishes by reducing the number 
of messages by one. 

 
Now suppose that the software developer decides that new messages coming in should be filled 

in by a separate thread than the thread interacting with the user in order to make programming 
easier. 
 

Unfortunately the above code may lead to some difficulties with multiple threads.   Suppose that 
a user is trying to delete a message and is part way through the deleteMessage function.  Just 

before the inboxCount is about to be reduced a new message arrives, and the newMessage() 
function is called.  The fact that both the variables inbox and inboxCount are being updated by 
two separate threads creates what is called a race condition.  A race condition is simply a 

sequence of code executed by two or more threads in which the end result depends on which 
thread finishes first.   In this case if either completely finishes, then it is not a race condition.  

However, if one of the threads is interrupted during the critical section, the results may not be 
as expected. 
 

This example should show that although simple code solutions work, when more than a single 
thread is introduced into the solution there is a risk when it comes to shared variables. 

 
 

Message Queues 
 

A popular mechanism provided by many operating systems for the purpose of inter process 

communication is the concept of a message queue.  In many multi-threaded programs there is 
often a lot of information that one thread will want to exchange with another thread rather than 
just doing synchronization. 

 
In order to send actual data from one thread to another, most operating systems provide a 

mechanism known as a message queue or a pipe.  In a message queue there is always at least 
one sender and one receiver.  The sender creates a message and puts it into a queue for 

delivery by the operating system.   The receiver listens to the queue for messages and will often 
block waiting for messages to arrive.  Once the message arrives, the receiver is woken up and 
the message is processed. 
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As an example we will slightly reconsider our e-mail program.   Suppose that we have a single 

thread that is responsible for adding and removing e-mail from the inbox.  We have seen that by 
having only one thread we remove critical sections.   Is it possible in this type of solution to still 
have a separate thread that checks for new messages?  Yes!   A solution is to configure a 

message queue between the checking thread and the inbox manager thread as follows: 

 

 
 

 
 
The main message processor will accept messages either a receiving thread or from a user 

interface thread.  The processing thread can only process one single message at a time and its 
pseudocode would look like this: 

 
Forever(;;) { 

 Wait for message from queue 

 If (message is delete) 

  Call delete function 

 Else if (message is new) 

  Call new message function 

} 

 
The message queues in many operating systems will allow for the listener to time-out if that is 

important for the program being developed.  Most operating systems send data across their 
message queues in a first-in-first-out (FIFO) arrangement, and some allow for queue jumping so 

that important messages can be inserted at the very front of the list. 
 
Most operating system message queues provide for a ―backlog‖ of messages.  If a sender quickly 

sends ten messages, the receiver must request each of the messages to remove them from the 
queue.  This leads to a significant problem in that if the receiver is not able to process the 

messages fast enough, you can end up with some strange results.   Most people have probably 
used a computer at one time that was not responding even though you were typing.  After a few 
seconds, the program suddenly responded and all of the characters typed appeared instantly.   

This is an example where the typed characters were put into a message queue but the receiver 
(the program) was busy doing other tasks. 

 
 

Figure 3.7 
Configuring a message queue 
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Process Scheduling Algorithms 

 
In this section we will describe the common algorithms that are used for scheduling processes 
and threads.  Here the word scheduling will refer to the task of deciding which process or thread 

should be selected from the process table and put into the Run state. 
 
Most current operating systems actually implement thread scheduling so that it does not matter 

if the two threads are in the same process or different processes. In this section we will try to 
use only the term ―process scheduling.‖  However, if the term thread is mentioned it really does 

mean the same thing. 

 

 
Scheduler and the Process Table 

 
The scheduler is a piece of software code (it is generally a function) that is included as part of 

the operating system.  The scheduler is often tied to the periodic clock interrupt and to most of 
the operating system calls.   By connecting to both a clock and the I/O, it means that processes 
can be scheduled each time there is a clock tick and they can be scheduled each time that the 

process talks to the OS (such as when it asks to take a semaphore, asks to sleep, or performs 
an I/O operation). 

 
Each time that the scheduler code is executed, the code will examine the process table and 
make a decision (based on what it reads from the process table) about which process should be 

run next.   Over the next few sections we may realize that some additional items are required to 
be added to the process table to help the scheduler. 

 
 

Round-Robin Scheduling 
 
If a computer has four processes currently running, it would seem logical that one of the fairest 
ways to divide the CPU time is to give each process a turn in a certain order and continue to use 

that order.   For example if the processes are called A, B, C, and D then the order could be: A, 
B, C, D, A, B, C, D, A, B, etc.  This type of scheduling is called round-robin scheduling.   Most 
modern operating systems provide this type of scheduling algorithms and it is one of the easiest 

algorithms to understand. 
 

A common way of showing the algorithm is to create a small table that looks like this: 

 

Process T1 T2 T3 T4 T5 T6 T7 T8 T9 

A          

B          

C          

D          

 
The labels T1, T2, etc. refer to small units of time called time slices or quantums.   The actual 
number of seconds (or more likely milliseconds) is dependent on the operating system but can 

sometimes be configured.   Typical values for the time slices are in the order of 10ms.  
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Each process is given a number of milliseconds to execute and then interrupted, and the 

scheduling algorithm will pick the next process in the list.   However, if the process blocks (waits 
for a semaphore or sleeps) the scheduler would wake up early and schedule the next process.   
While a process is in the blocked state it will be not considered until it gets back into the ready 

state. 
 

The size of the time slice is quite important.  If you pick a really large time slice (say ten 
seconds), then it means that each process gets to execute for up to ten seconds.  If Windows 

used a ten second time slice, then it means when you click on the start menu (part of the 
Explorer process) you might have to wait up to ten seconds for Word to finish what it is doing 
before seeing the menu appear.   On the other extreme, if you set the time slice to a really small 

value (such as 1 ms) then it means that the scheduler is executing 1,000 times per second.  
When the scheduler code is busy selecting a process it means that no other process can be 

running.  The result is an inefficient system that spends more time trying to decide what to do 
than actually doing something.  

 

 
Priority-Based Scheduling 

 
The round-robin type scheduling appears to be 

a very fair algorithm, and in most cases the use 
of this algorithm works well.  However, there 

are some situations where another form of 
scheduling leads to a better system from the 

user‘s point of view. 
 
Most people have probably used a computer at 

one time when the computer did not seem to 
be responding.  While using MS Word you may 

find yourself typing a few keys but nothing 
appears on the screen for a few seconds, then 
suddenly all of the characters you typed appear 

at the same time.   Although it might be okay if 
this happens just once a month, it should not 

be happening every few minutes.  While the 
user is typing they generally like to have some 
sort of instant feedback so they know their 

keys are being accepted.  If it took five seconds 
for your phone to show the digit you pressed 

when dialing a number, you would find this 
quite unacceptable. 
 

Unfortunately, with round-robin scheduling 
instant feedback is not possible unless we 

choose a very small time slice and we do not 
have a lot of processes. While your computer (or mobile) is running another process, we need 
some way of having the user application interrupt other applications.    In order to keep track of 

which processes are more important, the process table generally contains an entry called the 
priority.   Each time the scheduling algorithm is executed, the scheduler will look at the process 

table for the process that is in the Ready state and pick the process with the highest priority. 
 

Figure 3.8 
Windows Task Manager Showing Process Priorities 
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An operating system could allow the process itself to pick its own priority, or the priority could 

be picked by the operating system.  In some operating systems, priorities are simply low, 
medium or high.  In other operating systems, the priorities may be arranged between 0 and 255 
with 0 being the highest and 255 being the lowest (the meanings could be reversed with a larger 

number being higher in priority).  What do we do if there are two processes with the same 
priority? The usual implementation is to utilize round-robin scheduling for all processes that are 

of equal priority. 
 

When a process is put into the Run state, it will get to run until one of the following things 
happens: 
 

1. it finishes, 
2. it blocks, 

3. a higher priority process becomes ready. 
 
What if the process never blocks or finishes?  Then the process gets to monopolize the CPU and 

never allows any other process to run.   When a process never gets to run because a high 
priority process is using all of the time, it is called starvation.  Starvation is a danger of any 

operating system relying on priorities for scheduling and it requires careful programming to 
ensure that it does not happen.   You may be wondering how a higher priority process would 
ever become ready if another process is running all of the time.  As long as the currently running 

process eventually waits or gives a semaphore that the higher priority process is waiting for, 
then the high priority process gets to run. 

 
In most operating systems, processes started by the user (application) are assigned the same 
priority, and generally the processes created by the operating system are provided a higher 

priority so that the developers do no need to worry about this aspect.   In the Windows Task 
manager, it is possible to change the priority of the processes.  Linux also allows for the user to 

lower the priority of a process. 
 
 

Case Study: Priority Does Not Mean Importance 
 

A nuclear power plant produces power by having a nuclear reaction heat up water which 
generates steam and the steam is used to turn a turbine.  To slow down the reaction the plant 

can insert control rods into the reactor.   If the reactor gets too hot, you might cause a nuclear 
meltdown (you do not want this to happen!). Putting in the control rods is usually done by a 
robot and takes a certain amount of time. 

 
Suppose there is a sensor on the reactor that notifies a controlling computer when the 

temperature gets too hot. Also let us pretend that the computer program to move the control 
rods into place takes 30 seconds to complete, but if you do not get the task done in 60 seconds 
there is a meltdown. 

 
Meanwhile, inside the break room at the power plant is a coffee maker.  The coffee maker has a 

sensor which can detect when the pot is about to overflow, and it sends a signal to a computer 
program which is responsible for switching off the pot.   It takes one second for the computer to 
switch off the pot, but if you do not switch it off within five seconds the pot will overflow. 

 
Due to cost cutting, the owner of the nuclear power plant has decided to buy only one computer 

to control both the reactor rods and the coffee pot!   You of course have two processes running, 
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one for the coffee and the other for the reactor.  Which process should have the higher priority?   

We will assume that both alarms happen at the same time. 
 
Scenario One: The Control Rods get Higher Priority 

 
This makes sense because preventing a meltdown is a lot more important!   

 
1. Time = 0s.  Both alarms trigger. Control rod robot activated, ignoring coffee pot. 

2. Time = 5s. Coffee pot starts overflowing. 

3. Time = 30s. Control rods in place.  Lots of water on the floor.  Coffee pot is instructed to 

switch off. 

4. Time = 31s.  Coffee pot is off. 

 

 

Is this a good solution?  The plant did not meltdown, therefore this is good.  The coffeepot 
overflowed which means there is a mess in the break room, but we only need a mop. 

 
Scenario Two: The Coffee Pot gets Higher Priority 

 
This sounds like a silly idea but consider the sequence of 
events. 

 
1. Time = 0s.  Both alarms sound.  Coffee pot starts 

to be switched off. 

2. Time = 1s. Coffee pot is switched off.  Reactor rod 

robot started. 

3. Time = 31s.  Reactor rods inserted and meltdown 

prevented. 

 
In this solution, the control rods were inserted well within 

the required time and we also avoided the flooded break 
room. 

 
Conclusion 
 

Processes with important responsibilities do not always need the highest priority.   The selection 
of priorities is based a combination of how quickly a process must react and how long it will take 

to complete. 
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Other Scheduling Algorithms 

 
There are a number of other scheduling algorithms that are described in various texts, but they 

are often based on older operating systems where programs ran without a user sitting in front of 
the computer.  We include a brief description of each of these for completeness. 

 
 

First Come First Serve 

 
In this algorithm, there is no pre-emptive switching.  When a process is scheduled it runs until it 

is completely finished (or perhaps until it blocks).  The idea is quite simple once a process is 
started the most efficient thing to do is to let it run until is completely finished before allowing 

another process to run. 
 
This scheduling algorithm does not work for situations where two processes are working 

together to solve some problem however from a purely efficiency point of view it works well and 
there is no fear of having one process being interrupted by any other process. 

 
In a system running this type of scheduling the process table is created with a list of all the 
processes and then run without modification until all tasks are done (or new tasks added only 

between processes). 
 

 

Shortest Task Remaining 
 
The idea for this algorithm is to figure out which process will finish in the shorted amount of time 
and schedule the processes in an order that finishes as quickly as possible.  It tends to favor 

short processes over longer processes. The danger is that a lot of short processes could easily 
starve a longer process.   It is also not practical because you cannot actually know for certain 

how much more time is remaining for a given process. 
 
 

Scheduling and Blocking 
 

The scheduling algorithms presented earlier in this section have completely ignored tasks which 
are currently blocked.   We finish the section on scheduling by looking at one particular problem 

of blocking from a scheduling point of view. 
 
Suppose we have the following processes: 

 
Process A (priority high) 

Wait for 10 seconds 
Take semaphore S (block until it is available) 
Do calculation 

 
Process B (priority medium) 

Sleep 5 seconds 
Do calculation that takes 3000 seconds 
 



Operating System Fundamentals 52 

 

Process C (low priority) 

Take semaphore S 
Do calculation that takes 10 seconds 
Give semaphore S 

 
Suppose that all three processes are started at exactly the same time and that the semaphore S 

is available to the first process that requests it. 
 

As soon as all processes are started the process table will look like this: 
 

Name Priority State 

Process A High Ready 

Process B Medium Ready 

Process C Low Ready 

 

This means that the scheduler will select process A because it is the highest process that is 
‗Ready‘. Process A will execute, but the first thing that it does is sleep.  This means that its state 
will become ‗Blocked‘. 

 
Now the scheduler will wake up and select Process B because it is the highest process that is 

ready to run, but as soon as Process B runs its state turns to block because of the Sleep.  Next, 
process C gets a chance to run, and it takes the semaphore S and starts doing some 
calculations.  Process C does not block because it is running some long calculation. 

 
After five seconds, Process B wakes up and runs its 3000 second calculation.  Remember that 

process C is still ‗Ready‘ because it has another five seconds to go and it is also holding 
semaphore S. 
 

At ten seconds, process A wakes up from its sleep but immediately goes into a blocked state 
because it requests semaphore S (but C has it).   The scheduler then runs process B because it 

is the process with the highest priority that is available. 
 
The problem here is that Process A has the highest priority and wants to run, but it cannot 

because Process C has a semaphore it needs.  But Process C is not able to run because Process 
B is monopolizing the CPU.  This problem is called priority inversion because the medium priority 

process is preventing the high priority process from running. 
 
Solutions to this problem are not covered in this text, but two observations are noted: 

 
1. There is a shared semaphore between a high and low priority task; this is generally a bad 

idea. 
 

2. The task in the middle has a high priority but it monopolizes the CPU for a relatively long 

period of time.  Such a lengthy task should probably have had a lower priority. 
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Unit Summary 
 
Processes are instances of programs that are currently being run in a computer system.  In 
order to improve the efficiency of process execution and CPU scheduling, processes are often 
broken down into smaller units called threads.  Processes and threads are managed in by the 

operating system using a Process Table, which lists all processes and threads and their current 
state.  A process or thread can either be running, ready to run, or blocked (which means that 

they will be ignored by the process scheduler until their state has been changed back to 
―Ready‖).  Processes can also be marked in the Process Table as either ―new‖ or ―exit,‖ which is 
a form of blocking preventing them from being executed because they are not actually ready. 

 
A number of different strategies are used to allow processes and threads to exchange 

information so that they can synchronize themselves, or arrange themselves to be scheduled 
only in the correct sequence (or when specific required information is available).  The most 
common methods of inter process communication include the use of signals (often called 

semaphores) and message queues.  When exchanging information between processes or 
threads, certain critical sections of code most be handled carefully to make sure that they are 

not corrupted, that they are accessible when needed by other processes or threads, and that the 
desired outcome is achieved by the instructions being executed. 
 

The scheduling of processes can be handled using a variety of algorithms, but the most common 
methods are to handle all processes or threads in sequence (round-robin scheduling), or to 

schedule based on process priority (priority-based scheduling).   
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Unit 4: Memory Management 
 

What is Memory Management? 
 
Memory is vital to the functioning of any computer or 
computerized device.  As discussed in Units 1 and 2, 

memory consists primarily of RAM chips that are installed 
on the motherboard of a computer.  A typical computer 

now has between 1 GB and 4 GB of RAM.  RAM is divided 
into segments (typically 32 bits) that are used to 
temporarily store data and instructions that are being 

used by the computer.  This is different from your hard 
drive, which permanently stores files and programs.  RAM 

is much faster than your hard drive, so your data and 
instructions are loaded from your hard drive into RAM 
when the computer is using them.  When you turn off the power, everything stored in RAM is 

gone.  In addition to the physical RAM installed in your computer, most modern operating 
systems allow your computer to use a virtual memory system.  Virtual memory allows your 

computer to use part of a permanent storage device (such as a hard disk) as extra memory. 
 
Memory resources are managed by the operating system.  The operating system is responsible 

for allocating memory address ranges as needed to run applications and processes.  In this unit, 
we will look at the function of the memory manager in an operating system, and the types of 

problems that the memory manager must resolve.  We will look at some of the techniques that 
operating systems can use to actually allocate memory, and some of the problems that can 
occur when using specific memory allocation strategies.  We will also look at the purpose of 

virtual memory and how it works.  This will include a look at page files, the page table, and the 
page replacement policies used by operating systems to manage virtual memory. 

 
 

The Memory Manager 
 

The memory manager is part of the kernel (core) of the operating system.  It is responsible for 
efficiently managing all memory resources including RAM and virtual memory, and allocating 
memory space to applications and processes as needed.  The memory manager must keep track 

of all memory addresses and what they are currently being used for.  It must also protect those 
address ranges, and the data and instructions stored in them, from data and instructions being 

used by other processes.  The memory manager is also responsible for freeing up memory when 
it is no longer being used so that other processes can use it. 
 

The memory manager is responsible for four critical tasks: 
 

1. Allocating main memory to processes 
2. Retrieving and storing the contents to and from main memory when requested 

3. Effective sharing of main memory 
4. Minimizing memory access time 
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Efficient Memory Management 
 
A well designed operating system should make access and the management of resources as 

efficient as possible for both the user and the system.  Efficient memory management includes 
keeping track of all memory resources that have been allocated to different processes.  It also 
includes using different strategies for allocating free memory as it is needed by new processes.   

 
When it comes to the allocation of memory spaces and the retrieval of data from memory, you 

can compare the memory manager to the local telephone company.  There are many ways that 
the phone company can keep track of telephone numbers that have been assigned to customers.  
One way is to keep a sequential list of all phone numbers, along with the names of the 

subscribers.  Another way is to keep track of the names of subscribers, along with their assigned 
phone numbers (like a phone book).  An efficient memory manager would use both types of 

strategies to keep track of data stored in RAM.  The first strategy is useful for examining address 
ranges and finding free memory that is available for use.  The second strategy is useful for 
examining individual processes, and keeping track of what memory each process is using. 

 
An operating system‘s memory manager is also responsible for using different strategies to 

allocate free memory to new processes.  Each strategy has its advantages and disadvantages.  
The aim of the operating system is to use the most effective strategy to both minimize the time 

needed to save and access data, and to maximize the amount of usable space left in memory.  
You can compare this task to parking vehicles in a parking lot.  For example, you could park a 
motorcycle in the first available space.  If it is a very big space, then you will end up reducing 

the maximum number of vehicles you can park in the lot, because the rest of the space may not 
be quite big enough to fit another vehicle.  Conversely, you could try looking for the smallest 

possible parking space where the motorcycle will fit.  The drawback here is that it might take 
you longer to find such a spot.  
 

There are three main strategies that the memory manager can use when allocating free memory 
to processes: 

 
 Best Fit 

o Find the smallest free memory block that 

will fit the process needs 
o Idea is minimize wastage of free memory 

space 
 

 Worst Fit 

o Find the largest free memory block that 
will fit the process needs 

o Idea is to increase the possibility that 
another process can use the left-over 
space  

 
 First Fit 

o Find the first space to fit the memory 
needs 

o Minimize the time to analyze the 

memory space available   
    

Memory First Fit 

 

Worst Fit 

 

Best Fit 

 

 

Figure 4.1 
Using memory allocation strategies to assign 

12KB of memory 
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Fragmentation 
 
The use of particular memory allocation strategies may 

result in wasting valuable free memory.  That is because 
using either the best fit or first fit strategies may leave 
small chunks of free memory that are not large enough to 

be useful for any other processes (like parking a 
motorcycle in a parking space, and not having enough 

space left for another vehicle).  The allocation and de-
allocation of memory creates a condition called 
fragmentation.  This means that there are lots of small 

fragments (or holes) of free memory that cannot be used 
by any other process.  This results in a reduction in the 

amount of total available memory. 
 
The worst fit memory allocation strategy attempts to 

minimize fragmentation by finding the largest chunk of 
free memory available to allocate to a process.  By doing 

this, the memory manager tries to ensure that the unused 
memory ―holes‖ it leaves are as large as possible.  The 

goal is to leave as many big chunks of memory as 
possible so that as many fragments as possible are large 
enough to be used by other processes. 

 
 

Relocation 

 

Another task that must be handled by the 
Memory Manager is the relocation of applications 

in memory.  Applications have certain memory 
requirements when they are loaded.  However, it 
is not possible for the application to know in 

advance which memory range it will be 
allocated, because the application itself does not 

know what other processes will be running, how 
much physical memory the system will have 
available to it, and whether or not some of its 

required memory will be comprised of virtual 
memory pages (see next topic).  For this reason, 

the application will only make reference to 
―relative‖ or ―logical‖ address ranges.  When the 
application is compiled to load a process into memory, the operating system will allocate the 

actual address range based upon the relative ranges provided by the application, and the actual 
memory resources available.  As demonstrated in Figure 4.3 (right), the process that is loaded 

will provide a logical address, which is combined with a base address provided by the operating 
system, to determine its actual location in memory.  The application itself will be unaware of its 
location in memory.  However, once a process has been started, it is not possible for the 

Memory Manager to relocate that process in memory unless it is aware of the relocation, and the 
new base address. 

 

 

 
 

Figure 4.2 
The worst fit strategy assigns the largest 

free memory chunk so that it leaves behind 
the largest possible fragment 

Logical Address

Base Address

+

Physical Address

From program

From the OS The addition is 

done by the 

CPU

Figure 4.3 
Allocation of Physical Memory 
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Virtual Memory 
 
Despite the fact that most modern computers have between 1 GB and 4 GB of RAM, it is possible 

to run out of memory.  This can happen when you are running too many processes at the same 
time, or when a process requires more memory than is currently available (unused).  One 

solution to this problem is to use virtual memory. 
 
Virtual memory means that the operating system‘s memory manager will use a portion of 

another storage device to act as if it is extra RAM.  In most cases, this virtual memory space will 
be on a permanent storage device such as a hard disk.  However, some newer operating 

systems (such as Windows Vista and Windows 7) also allow you to use a removable media 
device like a USB flash drive as virtual memory (called Windows Ready Boost).  The memory 

manager will manage this resource so that it gives the illusion that your computer has more RAM 
than is actually installed.  
 

 

How Virtual Memory Works 
 
Virtual memory works by breaking down large programs into smaller units called pages.  The 
memory manager will store these pages on an area of the storage device (hard disk) that has 

been allocated for use as virtual memory.  This area is called a Page File (or Paging File). 
 

All of the pages that are currently loaded in main memory (RAM) will be listed in a Page Table, 
which is maintained by the memory manager.  If a process requests a page that is not currently 

loaded into RAM (in the Page Table), then a page fault will be generated.  The memory manager 
will attempt to resolve the page fault by locating the requested page in virtual memory and then 
loading it into RAM (and listing it in the Page File).  The memory manager will then try to re-

execute the instruction that caused the fault. 
 

 

Pages, Virtual Addresses and Physical Memory 
 

Figure 4.3 (right) shows how pages, virtual 
addresses and physical memory are combined to 

create a virtual memory system.  The memory 
manager maintains both a virtual memory space 

and a Page Table.  All processes and data that are 
loaded into either main memory or the page file 
(hard disk) are given addresses in the virtual 

memory space.  The Page Table keeps track of 
the locations of all the pages.  Although pages 

may be located on different physical devices, the 
memory manager treats them as if they are all 
contained in one large memory system.  When a 

page is actually needed for processing, it is 
loaded into main memory (RAM).  Older pages 

that are not currently being processed may be 
swapped from RAM back to the paging device 
(usually a hard disk). 
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Paging Device
(Hard Disk)

Figure 4.4 
Combining Elements to Create 

a Virtual Memory System 



Operating System Fundamentals 59 

 

Swapping Pages 
 
Whenever main memory (RAM) is full, or when a page is requested that is located in virtual 

memory, the memory manager needs to swap old or unused pages from RAM into virtual 
memory in order to make space for the new pages being loaded.  There are a number of 
strategies used by the memory manager to handle this task.  These strategies are often called 

replacement policies.  There are five main replacement policies that are used by operating 
systems: 

 
 Random Replacement 
 First In First Out (FIFO) 

 Second Chance 
 Least Recently used 

 Least Frequently Used 
 
Each of these replacement policies uses different algorithms for selecting pages to be swapped 

from RAM into the page file. 
 

Random Replacement 
 Replace pages in main memory randomly. 

 On the average, does not work well. 
 
FIFO 

 Uses a queue data structure to keep track of the pages in main memory. 
 Oldest page at the front (head) and newest page at the back (tail). 

 Always replace (get rid of) the oldest page. 
 Does not always work, because the oldest page may still be used by the process. 

 

Second Chance 
 Another version of FIFO to address the problem of FIFO. 

 All pages in the page table are tracked to see if they have been referenced recently by a 
process. 

 A Reference (R) bit for each page is used for this purpose: 

o R = 1 when the page is being referenced. 
o R = 0 when the page has not been used after a time period. 

o The OS will periodically check the (R) bit for each page and move the pages those 
(R) = 1 to the tail of the queue thus given a 2nd chance. 

 

Least recently Used (LRU) 
 Replace the page in main memory that has not been used the longest. 

 
Least Frequently Used (LFU) 

 Counter are used to record the number of times each page have been used. 

 The pages that have been used the least (lowest count) would be replaced. 
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Hit Ratios: Determining Which Replacement Policy to Use 
 
Using each of the five main replacement policies to swap pages between main memory and the 

page file will result in different hit ratios. A hit ratio is the number of times that a page is 
actually found in main memory, as opposed to the number of page faults generated (requiring 
the memory manager to retrieve the page from virtual memory). To calculate the hit ratio, we 

divide the number of non page faults by the total number of page requests (the number of times 
that data has been sent between the CPU and main memory).  Remember—page faults occur 

when a page is requested by the CPU that is not currently in the page table (in other words, not 
currently in RAM).  The memory manager resolves the page fault be swapping an old page from 
RAM to the page file (on the hard disk), then retrieving the requested page from virtual memory 

to RAM, and then re-executing the instruction.  Since there are extra steps involved in order to 
execute the instruction, and since retrieving a page from a hard disk is slower than RAM, page 

faults result in longer processing time.  We use hit ratios to determine which replacement policy 
will result in the fewest number of page faults, and the fastest overall processing time.  The 
policy that produces the lowest number of page faults is usually the policy we want to use. 

 

Calculating Hit Ratios 
 
To understand how to calculate hit ratios, we will examine an example that uses a RAM space of 

three (3) frames, and the following processing sequence: 
 

1 2 1 3 1 4 1 5 2 3 2 4 1 5 

 
In these examples, Y = a hit (the page is found in RAM), and N = a page fault (the page must be 

retrieved from virtual memory.  A frame is a segment of RAM that can be allocated to hold a 
page, and is typically the same size as a page.  Frames 1-3 are located in RAM.  Frames 4-5 
represent pages located in virtual memory.  

 
 

Using FIFO: 
 

Sequence 1 2 1 3 1 4 1 5 2 3 2 4 1 5 

Hit? N N Y N Y N N N N N Y N N N 

Frame 1 1  1  1 1 4   4 2  2  2 1  

Frame 2  2     2 1   1 3    3 5 

Frame 3    3    3 5    5 4   

Hit Ratio 3/14  

 

Using the First In First Out (FIFO) policy, we end up with a total of only three hits out of fourteen 
attempts to send information between the CPU and RAM. 
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Using LRU: 

 

Sequence 1 2 1 3 1 4 1 5 2 3 2 4 1 5 

Hit? N N Y N Y N Y N N N Y N N N 

Frame 1 1  1  1  1   1 3    3 5 

Frame 2  2    2 4   4 2  2  2 1  

Frame 3    3    3 5    5 4   

Hit Ratio 4/14  

 
Using the Least Recently Used (LRU) replacement policy, we end up with a total of four hits out 

of fourteen attempts to send information between the CPU and RAM. 
 
 

Using LFU: 
 

Sequence 1 2 1 3 1 4 1 5 2 3 2 4 1 5 

Hit? N N Y N Y N Y N N N Y N Y N 

Frame 1 1  1  1  1      1  

Frame 2  2    2 4   4 2  2    

Frame 3    3    3 5  5 3  5 4  4 5 

Count 1 1 2 1 3 1 4 1 1 1 2 1 5 1 

Hit Ratio 5/14  

 

Using the Least Frequently Used (LFU) replacement policy, we end up with a total of five hits out 

of fourteen attempts to exchange information between the CPU and RAM.  In this example, the 
LFU replacement policy has resulted in the highest hit ratio, and the least number of page faults.  
That means that using the LFU replacement policy will result in the least amount of times 

swapping pages between RAM and the page file, and the lowest overall processing time. 

 

 
Thrashing in Virtual Memory 
 
The use of virtual memory has both benefits and drawbacks.  The main benefit is that it 

artificially increases the overall amount of memory available for the execution of processes.  
However, as we have seen, swapping pages between RAM and virtual memory slows down the 

overall processing time.  It takes much more time to locate and retrieve data from a hard disk 
than it does from RAM.  When your computer spends too much time swapping pages between 
RAM and the page file, we call this condition thrashing.  Thrashing not only results in longer 

processing time, it also leads to increased wear and tear on your hard disk.  Normally, your 
computer only reads data from your hard disk when you are loading it into memory to be used.  

Your computer normally only writes data to your hard disk when you are finished with it, and 
you want to save it. 
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What Causes Thrashing? 
 
Thrashing is typically caused when you have too many 

processes running at the same time.  All of these 
processes will compete for the limited amount of 
physical memory installed in your computer.  If your 

computer is thrashing, your applications may stop 
responding (or run very slowly).  At the same time, 

you may notice your hard drive light blinking (and you 
may hear the hard drive spinning).  There are really 
only two ways to correct thrashing: 

 
1. Kill (stop) some of the processes (temporary 

solution) 
 
2. Install more RAM 

 
 

 

Unit Summary 
 
The memory manager has the responsibility of allocating memory resources to processes and 

threads as needed.  This task includes assigning memory as needed and retrieving information 
from memory when it is needed by the CPU.  The memory manager also has the responsibility 

for managing available memory as efficiently as possible to make sure that as much memory as 
possible is actually usable by processes, and to make sure that processes can be executed as 
quickly as possible.  The three main strategies used to assign memory spaces are called Best Fit, 

Worst Fit and First Fit.  Most modern operating systems also use virtual memory, which uses 
part of another storage device to act as extra RAM.  The memory manager must handle 

swapping pages (chucks of data and process code) between main memory (RAM) and virtual 
memory (storage device).  The page table is used to keep track of the location of pages in RAM, 
and if a page is requested that is not located in RAM a page fault will be generated.  The 

memory manager must find the requested page in virtual memory, load it into RAM, and re-
execute the instruction.  There are five main strategies (called policies) that are used the 

manage page swapping between RAM and virtual memory.  The memory manager must use the 
most appropriate strategy to minimize the number of page faults that are generated, thus 

minimizing the overall time needed to execute a process.  When too many processes are 
competing for main memory, and too many pages are being swapped between RAM and virtual 
memory, a condition called thrashing is created.  Thrashing can cause undue wear and tear on a 

hard disk, and increases the amount of time needed to execute an instruction set.  The memory 
manager tries to minimize thrashing, but the only real solutions are to either reduce the number 

of running processes or add more RAM to the system. 

 
 

Quick Tip: 
 
You can change the size of your 

operating system‘s page file 
(virtual memory).  How you do 
this depends on the specific 

operating system.  However, your 
page file should never be bigger 

than 1.5 times the size of the 
amount of RAM installed in your 

computer.  If it is bigger than that, 
your memory manager will rely 
too much on your virtual memory, 

and you will experience thrashing. 
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Unit 5: Input/Output 
 

What are Input/Output Resources? 
 
Input/Output devices were briefly discussed in Unit 1: Architecture Review.  Input devices are 
any devices that allow data to be input into a computer system.  The most common examples 

are the keyboard and mouse, although there are many others.  Output devices are any devices 
to which the computer can send output data, such as the monitor or printer.  These I/O devices 

are connected to the CPU by a series of system busses on the motherboard.   The operating 
system is responsible for issuing commands to I/O devices, as well as handling all interrupts and 
errors generated by the devices.  The operating system needs some way to efficiently manage 

all of these devices and the flow of data coming in from them, or going out to them.  These 
responsibilities are complicated by the fact that many processes being executed by the operating 

system may need to share the same I/O resources.  In this unit, we will examine I/O resource 
management from two perspectives.   
 

First, we will look at I/O resource management from a 
hardware management perspective.  We will examine the role 

of device controllers, as well as the differences between 
preemptable and non-preemptable I/O resources, and block 
and character I/O devices.  Later in the unit, we will take a 

detailed look at the actual management of one of the most 
common I/O hardware devices in any computer system: 

magnetic storage devices (hard disks and floppy disks). 
 

We will also be examining I/O resource management from a software 

perspective.  We will take a look at the role of I/O management 
software, and I/O software system layers.  This will include an 

examination of the software operating at each layer.  In particular, we 
will focus on the role and structure of device drivers. 
 

We will conclude this unit with a brief look at the role of the system 
clock in the management of I/O resources.     

 

 
I/O Resources 
 
Input/Output resources are any I/O devices (and their supporting hardware and software 
components) that are available for use by processes being executed by the operating system.  

These resources are frequently shared between processes, so the operating system must have 
some way to regulate access to the resources to prevent conflicts and deadlocks.  The operating 

system uses device controllers to handle communications with I/O devices.  I/O resources can 
be categorized as either preemptable or non-preemptable.  In addition to regulating access to 
I/O resources, the operating system must also control how data is transmitted to and from I/O 

devices.  Data transmission can be handled as either character or block transmission, depended 
upon the type of I/O device.   

 
 

Common Input Devices 

Common Output Device 
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Device Controllers 

 
Device controllers are components on the motherboard (or on expansion cards) that act as an 

interface between the CPU and the actual device.  The operating system actually controls the 
device by using device controllers, which interpret the commands being issued to the device.  

Instructions sent to the device are compared to a list of device commands stored on the 
controller, which then forwards the appropriate command directly to the device.  When a device 
needs to access the CPU, the device controller issues an Interrupt Request (IRQ), which is then 

forwarded to the interrupt controller.  The interrupt controller then forwards the request to the 
CPU. 

 
Some of the more common device controllers found in a typical computer include: 
 

 Keyboard Controller – controls the keyboard and PS/2 mouse (not always needed in 
newer systems) 

 DMA Controller – controls Direct Memory Access 
 Network Adaptor Controller – controls the Network Adaptor/ Network Interface Card (NIC) 
 IDE Controller – controls EIDE devices, including the hard disk and CD/DVD drive 

 Graphics Adaptor – controls video output devices, such as a monitor or LCD projector 
 USB Controller – controls devices connected by USB 

 
 

The Interrupt Controller 
 
The interrupt controller is a special 

component on the motherboard that 
manages all interrupts, prioritizes them 

based on a predetermined priority 
sequence, and then forwards the interrupts 
to the CPU.  You can think of the interrupt 

controller like a police officer at a busy 
intersection, or a security guard at the 

main gate to a government office.  When a 
device wants the CPU‘s attention, its device 
driver initiates an interrupt request (IRQ).  

Each type of device has a different IRQ 
number assigned to it, so when multiple 

devices signal for the CPU‘s attention at 
the same time, the interrupt controller 
checks their IRQ number, and places them 

in a queue.  The device with the lowest IRQ 
number gets the highest priority, just like a 

police officer letting more important 
vehicles (perhaps a government convoy or 
an ambulance) proceed through an 

intersection first. 
 

 

Figure 5.1 
The Interrupt Controller is like a traffic officer giving 

priority to more important vehicles 
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Managing Interrupts 
 
A typical modern computer system has two interrupt controllers that function as one unit.  Each 

controller has eight lines.  (This is because in the first personal computers developed in the late 
1970s and early 1980s, the system bus was only eight bits wide.)  Since every function of the 
computer needs the system clock in order to manage its timing, the highest priority is given to 

the system clock (which is given IRQ 0).  The keyboard gets the next highest priority, since it is 
needed in order to manually override any other processes being carried by the computer.  Thus, 

the keyboard is given IRQ 1. 
 
Although we say that the higher the IRQ number is, the lower priority the device is given, 

devices using IRQ numbers 8-15 actually get higher priority than devices using IRQ numbers 3-
7.  This is because of the use of two controllers acting as one unit.  All interrupt requests coming 

from the second controller are actually sent to IRQ number 2 on the first controller, which then 
forwards them on to the CPU.  Figure 5.2 (below) demonstrates the structure of the interrupt 
controller system. 
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Figure 5.2 
Structure of the Interrupt Controller System 
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Preemptable I/O Resources 
 
Preemptable I/O resources are resources that can be taken away from 

a process that is currently using them.  In order to be considered a 
preemptable resource, the reallocation of the resource must have no 
negative effect on the processes involved (other than the overall time 

needed to complete the process execution).  A common example 
would be memory.  When a resource is preempted, or taken away 

from a process, the process is often placed into a blocked state, and 
must wait until the resources is made available again before it can 
return to a ready state and continue being executed. 

 

Non-Preemptable I/O Resources 
 

Non-preemptable I/O resources are resources that cannot be taken 

away from a process that is currently using them without having 
some negative effect.  An example of a non-preemptable resource 
would be a CD/DVD drive.  If a process is reading from or writing to 

an optical storage device, it is difficult to take that resource away 
from the process without corrupting whatever is being read or 

written to the drive. 
 
 

 
Deadlocks 
 
Deadlocks occur when multiple processes are holding I/O resources, and they each require 

resources that currently in use by another process that is unwilling to release the resource.  
When this occurs, neither process is able to make any progress.  For example, one process may 

currently hold control of the optical storage (CD/DVD) drive, and may need to send something to 
the printer.  A second process may hold control of the printer, and may need to access data 
from the CD/DVD drive.  If neither process is willing to give up control of the resources it 

currently holds, then neither process will be able to proceed.   
 

 

Block I/O Devices 
 
Some I/O devices send and receive data from the computer system in blocks of characters.  
Such devices are referred to as block I/O devices.  The operating system manages reading and 

writing data to block devices by using a data buffer system.  Data buffers are allocated to hold a 
single block of characters.  When the buffer is full, the data in the buffer is then sent to or from 

the I/O device in one chunk.  Common examples of block I/O devices are hard disks, optical 
storage drives, and memory regions.   
 

 

Character I/O Devices 
 
Some I/O devices send and receive data from the computer one character at a time.  Such 
devices are called character I/O devices.  Common examples include virtual terminals and serial 

modems.  Character transmission to character devices is unbuffered. 

Optical storage devices 
are non-preemtable 

Memory is a 
preemptable resource 
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I/O Management Software 
 
From a software perspective, there are really two main elements to consider.  The first is device 

drivers, which are the operating system software components that interact with the devices 
controllers.  The second element is the interrupt handler.  This software is really part of the 

device driver, but it is responsible for issuing interrupt signals to the interrupt controller when a 
device requests access to the CPU.  
 

The I/O software system functions in layers, as illustrated in Figure 5.3 (below).  One layer is 
the device drivers.  Each type of device shown below has its own controller, which is responsible 

for relaying instructions to all devices connected to it.  Device drivers issue instructions from the 
operating system to the device controller, which in turn handles the actual functioning of the 

device.  Another layer is the interrupts.  When a device controller issues a request from a device 
to gain access to the CPU, the interrupt handler (part of the device driver) sends the interrupt 
signal to the interrupt controller. The interrupt is then relayed to the CPU, as outlined in the 

previous section. 
 

 

 
 

Figure 5.3 

I/O Software System Layers 

 

 

Device Drivers 
 

Device drivers are essential components of an operating system.  They translate instructions 
from the operating system and other processes into instructions that are used to drive the 

device controllers.  In order to handle controlling the input/output devices that are part of the 
computer system, device drivers are structured into two layers.  The Upper Half of the device 

driver handles taking requests in from the operating system, and places them in a ―Shared 
Requests List.‖  The Lower Half of the device driver handles taking requests from the shared 
requests list, and programs them for the device control to carry out the instructions.  The 

interrupt handler is part of the Lower Half of the device driver.  It is used when the device 
controller calls for an interrupt request, and it handles the issuing of the interrupt request to the 

interrupt controller.  Figure 5.4 (below) illustrates the structure of a typical device driver. 
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Figure 5.4 

Device Driver Structure 

 
In this diagram, the blue box represents the device driver, which is divided into the Upper Half 

and Lower Half.  The red arrows represent the flow of instructions from the operating system, 
which first pass into the Upper Half, then into the Shared Request List.  These instructions are 

then programmed by the Lower Half, and forwarded to the device controller for execution.  The 
blue arrows represent the flow of requests and data out of the device driver.  In this diagram, 
the device controller is returning results back to the device driver, which then sends them back 

out to the operating system.  The interrupt handler is also demonstrated issuing an interrupt 
request to the interrupt controller. 
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Managing Magnetic Disks 
 
Magnetic disk storage represents one of the most popular 

categories of I/O resources used by a computer.  Processes and 
threads must be able to read data from, and write data to 

magnetic storage devices such as hard disks and floppy disks.  
This is most frequently done when accessing pages from virtual 
memory, but it also occurs when processes try to open or close 

files stored on disks.  In this section, we will look at how 
magnetic storage devices are formatted to hold data, and how 

that data is structured on a disk so that the operating system 
can read and manage it.  We will also take a look at the elevator 

algorithm, which is a pattern used by operating systems to 
manage data retrieval as efficiently as possible. 
 

 

Disk Formatting 
 
Disk formatting is the process of preparing a disk to hold data.  When you reformat a disk, it 
destroys all of the data previously stored on it.  There are three key stages to the formatting 

process for a disk: 
 

Low-level formatting: 
 Takes place at the factory. 

 Involves physically drawing tracks and sectors on the disk surface. 
 
Partitioning: 

 Done by the user. 
 Involves dividing the disk into logical sections. 

 Only primary hard disks can be partitioned (cannot partition external hard disks or floppy 
disks) 

 

High-level formatting: 
 Done by the user. 

 Involves the selection of a file system (such as FAT or NTFS for Windows), and the 
installation of an operating system. 

 Different partitions can use different file systems, and can even be used to install different 

operating systems in the same computer. 
 

What are Partitions? 
 
Partitions are logical divisions of a hard disk.  That is, you divide your hard disk into sections 

that will be used for different purposes.  You could create multiple partitions if you want to install 
multiple operating systems.  (When you boot your computer and select the operating system to 

use, it will use the appropriate partition, and ignore the others.)  You could also partition a hard 
disk so that you can store files using two different file systems, or so that you can provide 
additional security for your files (for example, if you store your personal files on a different 

partition than your operating system and software, then your files will be less likely to get 
infected by a virus).  Partitioning a hard disk has other file system benefits, such as reducing the 

size of file clusters (which results in less wasted space as more files are stored on the disk). 
 

Hard disks are 
common I/O resources 
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A hard disk can only have four primary partitions, each of which could be used for a different file 

system and/or operating system.  A partition that contains an operating system is called an 
active partition.  However, once an operating system is installed, you can select a partition and 
further divide it into logical drives (each of which would be assigned a drive letter).  Although 

the data on logical drives is not physically isolated (as it is in partitions), each logical drive 
appears as if it were a separate disk for file management purposes.  This could be useful for 

organizing file storage, or for allocating logical drive space for the exclusive use of different 
computer users. 

 
 

How is Data Structured on a Magnetic Disk? 
 
Data on magnetic disks is physically organized using tracks, sectors and clusters.  On hard disks, 

data is also organized using platters (a floppy disk has only one platter, while a hard disk can 
have several physical platters, which are each organized into tracks, sectors and clusters).  A 
track is a concentric circle on a disk or platter.  A sector is a division in a concentric circle.  A 

cluster is the smallest unit of storage space available on a disk.  The larger a hard disk is, the 
bigger the clusters become.  On a floppy disk, the cluster size is the same as the size of a sector 

(512 bytes).  Figure 5.5 (below) shows the organization of tracks and sectors on a floppy disk. 
 

Track

Sector

Floppy Disk 
Platter  

 

Figure 5.5 
Tracks and Sectors on a Floppy Disk 

 

In addition to creating tracks and sectors, when you format a floppy disk, you also create a boot 
record, a File Allocation Table (FAT) and a Root Directory.  The boot record is always the first 
sector on a disk.  It contains a bootstrap loader, which can be used to boot a computer from the 

disk, as well as information about how the disk is organized.  The File Allocation Table lists the 
location of all clusters on the disk, and how they are currently being used.  The Root Directory 

lists all of the files and subdirectories currently stored on the disk. 
 
Hard disks are somewhat different from floppy disks.  A hard disk contains several physical 

platters which are stacked on top of each other.  Each platter is double-sided, with tracks and 
sectors drawn on the surface.  All of the concentric tracks that line up with each other on each 

platter are referred to as a cylinder.  Figure 5.6 (below) shows how the platters stack up inside 
of a hard disk.  There is a read/write arm (with a read/write head) for each platter surface.   
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Figure 5.6 

Inside a Hard Disk 

 
Another difference between the physical structure of a floppy disk and a hard disk is the size of 
the sectors and clusters on the disk.  Cluster size varies on hard disks, depending upon the 

actual size of the disk, the file system used, and the number of partitions.  On a floppy disk, the 
sector size is fixed at 512 bytes.  That means, the closer you get to the center of the physical 

disk, the fewer the number of sectors per track.  On newer hard disks, the sectors get smaller as 
you get closer to the center of the disk.  This means that you can have the same number of 
sectors for each track.  The differences in how tracks are divided into sectors on floppy disks and 

hard disks are shown in Figure 5.7 (below). 
 

 

  
 

Figure 5.7 
Tracks and Sectors on Floppy Disks and Hard Disks 
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The Elevator Algorithm 
 
Now that we know how magnetic disks are physically structured, we can turn our attention to 

how the interrupt handler actually handles requests to retrieve information from disk resources.  
This is typically done using the elevator algorithm.  For this discussion, we will concentrate on 
requests for data from a hard disk.  However, it should be noted that the elevator algorithm can 

be used by the interrupt handler to handle requests for data from other storage devices, as well. 
 

The elevator algorithm is a strategy used by the interrupt handler to find data on a storage 
device when it is requested by a process.  Using a first come first serve strategy to fill requests 
for data that have accumulated in the shared request folder is not an effective strategy, because 

it would actually take too long to constantly change the direction of travel of a disk‘s read/write 
head.  This strategy would also increase wear and tear on a disk.  Instead, the elevator 

algorithm organizes data requests based on the data‘s cylinder location on a disk.  Using the 
elevator algorithm, the read/write head will only move in one direction at a time, and will ―pick 
up‖ requested data as it moves from cylinder to cylinder. 

 
The actual decision making process used by the interrupt handler is: 

 
1. If the request queue is empty, exit interrupt handler 

2. If read/write arm‘s direction is UP, move from the current cylinder (just completed 
request) to the next higher cylinder to perform that request. 

3. If direction is DOWN, move the arm from the current cylinder (just completed request) to 

next lower cylinder to perform that request. 
4. If no request lies in current direction, reverse direction. 

 
Using this algorithm, we can examine the handling of requests for data from cylinders on a hard 
disk.  Assume that the original request order in the shared request folder is for data from the 

following cylinders: 
 

1, 16, 9, 31, 11, 12, 29 
 
Figure 5.8 (below) shows the current position of the disk‘s read/write head, the current direction 

of movement and the locations of the requested data. 
 

Current Position of Read/Write Head 
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Figure 5.8 
Retrieving Data using the Elevator Algorithm 

 
In this example, the read/write head is currently located at cylinder 17, and the arm is moving 
in the Up direction.  The next piece of data requested in the current direction is on cylinder 29, 

so the actual order in which the data requests are filled would be: 
 

29, 31, 16, 12, 11, 9, 1 
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System Clocks 
 

Every process carried out by a computer is timed by a clock.  While we 

generally refer to the system clock as one single timing device, there are 
actually several clocks operating in a modern computer. 

 
The main system clock is part of the motherboard, and is typically timed in 
Gigahertz (GHz).  One hertz means one cycle per second, so a system clock 

operating a 2.4 GHz (a typical speed for a modern PC) operates at 2.4 
billion ticks (or cycles) per second.  A single cycle of a system clock is the 

shortest possible amount of time that any process running in a computer 
can be completed.  The main system bus operates in time with the main 

system clock.  Other clocks in a modern computer include the processor clock, the cache clock 
and clocks for the various I/O busses.  The operating speeds for each of these clocks are 
different, but they are all tied to the main system clock.  Their clock speeds are calculated by 

either multiplying or dividing the system clock speed by a set number. 
 

Some clocks operate more slowly than others because the types of devices they regulate (such 
as I/O devices) cannot function at speeds as high as the system clock.  Typically, the CPU 
operates at a faster speed than the system clock.  It is obvious that, since some devices operate 

at slower intervals, the processor may actually spend extra time waiting for those devices to 
complete tasks before it can continue with a particular process from the Process Table.  

However, this does not necessarily mean that the entire computer system will be slowed down, 
as the process waiting on a device can go into a blocked or wait state, and the process scheduler 
can cycle to another process from the Process Table. 

 
 

Unit Summary 
 

Every computer has numerous input/output devices that must be managed by the operating 
system.  The operating system needs to control the functioning of these devices.  It must also 

manage sending and receiving information from the devices, and sharing these resources 
amongst the many processes that are running (or waiting to be run) at any given time.  In order 
to help the operating system with these tasks, each type of I/O device usually has its own device 

controller.  The device controller talks to the operating system‘s device drivers, and translates 
instructions from the operating system so that they can be carried out by the device.  A special 

device called the Interrupt Controller handles the task of receiving interrupt requests (IRQs – 
requests to either send or receive information from the CPU), and prioritizes them to be 
forwarded to the processor. 

 
Some I/O resources (like memory) are considered preemtable.  That means that if they are 

being shared by multiple processes, they can be taken away from whatever process is currently 
using them and reallocated to another process.  Other I/O resources (like CD/DVD drives) are 
considered non-preemptable.  That means that once they have been allocated to a process, they 

cannot be taken away from that process until it has been completed (without causing some sort 
of problem or corruption to the task).  Deadlocks can occur when two (or more) processes have 

control of different I/O resources that are needed by the other processes, and they are unwilling 
to give up control of the device.  When this happens, neither process is able to be completed. 
 

From a software perspective, there are two main elements that come into play in managing I/O 
resources.  The first is the device driver, which is supplied by the operating system to control an 
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I/O device.  Device drivers are structured into an Upper Half and a Lower Half.  The Upper Half 

handles taking requests from the operating system and places them into a shared request folder 
for the device.  The Lower Half takes requests from the shared request folder, and programs 
them to be carried out by the device.  The second major element is the interrupt handler, which 

is really a part of the Lower Half of the device driver.  It is responsible for issuing interrupt 
signals to the computers interrupt controller when a device needs the attention of the CPU. 

 
One of the most common types of I/O device managed by an operating system is magnetic 

storage devices.  Devices such as floppy disks and hard disk drives need to be physically 
formatted into tracks, sectors and cylinders (for hard disks), and they need to be formatted with 
a file system that the operating system knows how to read.  When retrieving data from a hard 

disk, the operating system often relies on the Elevator Algorithm to determine in which direction 
to move the disk‘s read/write head to find the next nearest piece of data, and in which order the 

data should be most efficiently retrieved. 
 
All of the I/O resources in a computer system operate in time with the main system clock.  There 

are actually several clocks inside of a modern computer, each operating at different speeds 
(depending upon what can be handled by the type of device they govern).  Each of these clocks 

is actually tied to the main system clock, and their speeds can be determined by either 
multiplying or dividing the system clock speed by a set number.  One cycle of a system clock is 
the shortest amount of time that any process running in a computer can actually be completed. 
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Unit 6: File Systems 
 

Managing File Systems 
 
We have already taken a detailed look at the structure of a typical operating system, as well as 
how an operating system manages all of a computer‘s hardware resources, RAM and the 

scheduling of all of the processes and threads that need to be executed.  In this unit, we will 
examine the last key element of a user‘s experience with a computer system.  File system 

management encompasses the provision of a way to store your data in a computer, as well as a 
way for you to find and access that data when you need it.   
 

We will begin this unit by looking at the requirements in a computer system in order to provide 
long-term storage of information.  We will also look at an operating system‘s File Manager and 

all of its responsibilities.  This will be followed by an examination of common strategies used by 
the File Manager to store and retrieve information from storage media.  From there, we will turn 
our attention to the file systems that are created when an operating system formats a storage 

device (such as a hard disk).  This will include a comparison of the characteristics of the FAT32 
and NTFS file systems, as well the purposes of the Master Boot Record and Partition Tables 

created on a hard disk during formatting.  We will conclude this unit with a look at how users 
actually interact with a file system.  This will include an examination of the purposes of 
directories or folders, and the navigation of hierarchical file structures. 

 
 

Long-Term Storage of Information 
 

When we examined computer memory, we saw that RAM is only useful for the temporary 
storage of data and instructions that are currently being used by a computer.  Although RAM is 

very fast, it is volatile memory.  That is, when you turn off the power to the computer, all data 
stored in RAM is lost.  In addition, a typical computer has a relatively small amount of RAM 
compared to a user‘s long-term data storage needs.  In order to permanently store information, 

an operating system has several requirements: 
 

 A storage device (typically a magnetic hard disk). 
 A device controller and device driver for the storage disk. 
 Strategies for reading and writing data to a disk. 

 A file system that provides a structure and rules for file 
encoding, management and security. 

 
Although long-term data storage can be achieved using a 
variety of media (ranging from optical discs to floppy disks and 

USB Flash drives), this unit will focus on magnetic hard disks.  
That is because every personal computer system relies upon 

hard disk storage, and hard disks are by far the most common 
long-term data storage media. 

 
 

Hard disks: the most common 
long-term storage media 
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The File Manager 
 
The File Manager is the part of the operating system that is responsible for the management of 

long-term storage devices such as hard disks.  The File Manager provides a framework (or a 
hierarchical structure) for the organization of data that is stored on a disk.  The primary 

responsibilities of the File Manager include: 
 

 The organization of similar data (text, images, music and sounds, video, etc) in some 

manner, and putting that data into files. 
 The organization of files into directories and folders. 

 The organization of different levels of folders. 
 The management of different partitions in a disk. 

 The management of multiple disks for data storage. 
 
The File Manager has additional responsibilities that are based on the primary responsibilities 

listed above.  These include: 
 

 Partitioning and formatting disks.  
 Establishing file-naming rules or conventions. 
 Providing data integrity. 

 Providing error recovery and prevention tools. 
 Providing file security. 

 Providing directory paths. 
 Providing command sets to manipulate files. 

 

 

Data Storage Strategies 
 
Data storage strategies refer to how the operating system physically organizes and stores pieces 

of files on a disk.  There are three common data storage strategies: 
 

1. Contiguous Allocation Strategy 
2. Linked Allocation Strategy 
3. Indexed Allocation Strategy 

 
 

Contiguous Allocation Strategy 
 

The contiguous allocation strategy is perhaps the simplest strategy for an operating system to 
set up.  In a contiguous allocation file system, all pieces of a file are stored in contiguous (or 
physically adjacent) storage spaces on a disk.  To keep track of files stored on the disk, the 

operating system maintains a file directory that lists the names of the files, the start block for 
the file on the disk, and the actual size of the file.  The contiguous strategy has both advantages 

and disadvantages.   
 
Advantages of the Contiguous Allocation Strategy 

 Easy to set up. 
 Easy approach for the sequential access of data. 

 
 
Disadvantages of the Contiguous Allocation Strategy 
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 Not easy to expand the size of a file. 

 Difficult to manage file fragmentation. 
 OS must allocate and reserve contiguous space during the initial creation of the file. 

 

Figure 6.1 (below) shows the allocation of disk space for files, and a file directory, for a sample 
hard disk. 
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Figure 6.1 
Contiguous File Allocation 

 
 

Linked Allocation Strategy 
 
Using the linked allocation strategy, the contents 

of a file can be stored anywhere on a disk (they 
do not need to be contiguous).  The operating 

system maintains a file directory which contains 
the file name and the start block number.  Each 
block of data belonging to a file contains a 

pointer, which points to the next block of data 
belonging to that file.  The last block of data 

contains a special End of File (EOF) indicator, so 
that the operating system will know that it has 
retrieved all of the data for the file.  Figure 6.2 

(right) shows the File Directory entry and the 
entries in the File Allocation Table for a sample 

file using the Linked allocation Strategy.   
 

The linked allocation strategy also has 
advantages and disadvantages. 
 

Advantages of the Linked Allocation Strategy 
 No file fragmentation issues. 

 Easy to expand the size of a file. 
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Figure 6.2 
Linked Allocation Strategy 
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Disadvantages of the Linked Allocation Strategy 

 The pointers field for each block of data uses up storage space. 
 There are some inefficiencies in the direct access of data. 

 

 

Indexed Allocation Strategy 
 
When using an indexed allocation strategy, the operating system creates a file directory to track 

all of the files on a disk, and an index block for each file.  The file directory entry for each file 
includes the file name, just like with the contiguous and linked allocation strategies.  However, 
instead of listing the starting block on the disk for each file, the file directory entry will include 

its index block number.  The index block contains pointers to all of the data blocks belonging to 
that file.  Again, the indexed allocation strategy has both advantages and disadvantages. 

 
Advantages of the Indexed Allocation Strategy 

 Grouping all pointers in one place increases reliability. 

 Makes direct access of the contents of a file more efficient. 
 

Disadvantages of the Indexed Allocation Strategy 
 If a file is small, the index block containing all of the file pointers may contain a lot of 

wasted disk space. 
 
Figure 6.3 (below) shows the allocation of disk space, the File Directory and the Index Block for 

a sample file on a hard disk using the Indexed Allocation Strategy. 
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Indexed File Allocation 
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File Systems 
 
File systems provide the conventions for the encoding, storage and management of data on a 

storage device such as a hard disk.  They also provide the tools that help users to interact with 
files.  Different operating systems use different file systems, and files created/stored using one 

file system are not always compatible with an operating system that uses a different file system.  
As discussed in Unit 2: Operating System Fundamentals, some of the more common file systems 
include: 

 
 FAT12 (floppy disks) 

 FAT16 (DOS and older versions of Windows) 
 FAT32 (older versions of Windows) 

 NTFS (newer versions of Windows) 
 EXT3 (Unix/Linux) 
 HFS+ (Max OS X) 

 
Regardless of which file system an operating system uses, the file system provides the following 

conventions and information for file management: 
 

 Data and time the directory (folder) or file was created. 

 Date and time the directory or file was last modified. 
 Directory or file size. 

 Directory or file attributes. 
 
Each file system has its advantages and limitations.  For example, the FAT12 (12-bit File 

Allocation Table) file system used for floppy disks is ideal use with media with small storage 
capacities (a floppy disk can hold approximately 1.2 MB of data).  However, it limits the disk to a 

maximum of 512 entries in the file table, which means a maximum of 512 files and folders (even 
if each file is only 1 byte! 
 

Two of the most common file systems are the FAT32 (32-bit File Allocation Table) and NTFS 
(New Technology File System) systems used by later versions of Windows.  FAT32 is an older file 

system with a disk size limitation of 32 GB.  FAT32 also limits the size of any single file to a 
maximum of 4 GB.  NTFS allows for disk (or volume) sizes of up to 2 terabytes (TB), with an 
unlimited number of files and folders.  It also eliminates the 4 GB file size restriction.  Table 6.1 

(below) compares the characteristics of FAT32 and NTFS. 
 

Table 6.1 
Comparison of FAT32 and NTFS 

 

FAT32 NTFS 

 Used for older versions of Windows. 

 Still used for smaller capacity storage 

devices, such as USB flash drives. 

 Maximum disk (or volume) size of 32 GB. 

 Maximum file size of 4 GB. 

 File fragmentation issues. 

 Default file system for Windows XP, Vista, 

and Windows 7. 

 Maximum disk (or volume) size of 2 TB. 

 No maximum file size. 

 No maximum number of files. 

 Greater security features, including 

individual file compression, disk quotas, and 

file encryption. 

 Easy to convert volumes from FAT32 to 

NTFS. 

 

Is NTFS More Efficient Than FAT32? 
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In today‘s modern computing environment, where large hard disk sizes are standard on most 
personal computers, NTFS is a much more efficient file system for users of Windows operating 
systems.  The reason for this lies in how NTFS handles space efficiency.  Unlike FAT16 and 

FAT32, NTFS does not use a file allocation table.  It operates as an actual database in terms of 
how it keeps track of files and their associated clusters.  NTFS also allows for smaller cluster 

sizes on large disks, which results in less wasted space than FAT32.  With FAT32, the larger the 
disk becomes, the larger the cluster size becomes.  (Remember that a cluster is the smallest 

unit of storage space that can be allocated to a file.  Even if a cluster only contains the last 2 KB 
of data from a file, if the cluster is 1024 KB, then the remaining 1022 KB cannot be used to store 
any other data!). 

 
The database created by the operating system to manage file and cluster information for NTFS 

does use up a lot of space compared to the cluster maps used by FAT32.  For instance, on a 50 
MB disk drive, the NTFS cluster database could take up as much as 10 MB of space (which, 
obviously, cannot then be used to store actual files).  For today‘s larger disk drives, the amount 

of space used by NTFS to manage files is relatively small and is therefore not a concern.  NTFS 
also provides greater file compression capabilities than FAT32, which means that the same files 

may actually take up less space on a disk.  However, for smaller capacity storage devices (such 
as USB flash drives or flash memory cards used by mobile phones and digital cameras), FAT32 is 
still a useful file system because it wastes less space to manage files and their associated 

clusters. 
 

When working with larger hard disks, NTFS also provides increased file security over FAT32.  
Individual file compression is one technique used to achieve increased file security.  File 
compression means that redundant data in files (ex: all of the information that is common 

between all MS Word files) is removed while the files are being stored, and added back in when 
the files are in use.  NTFS allows operating system administrators to assign disk space quotas to 

individual user accounts, preventing users from using too much storage space.  File encryption 
means that one user‘s files are encoded in such a way that they cannot be accessed by another 
user on the same computer (if the two users are using different accounts and if the files are not 

marked as “shared” files). 
 

 

Master Boot Record and Partition Table 
 
When a disk is partitioned and formatted for use with one or more file systems and operating 

systems, a Master Boot Record and a Partition Table are created.  The Master Boot Record is 
located in the first 512 byte sector of a partitioned hard disk.  It is actually located outside of 
any of the partitions that are created on the disk, and it serves the following purposes: 

 
 Holds the partition table. 

 Contains a bootstrap loader to continue the computer booting process after BIOS has 
completed its initial boot routines. 

 Identifies each individual disk with a unique 32-bit disk signature. 

 
The Partition Table is part of the Master Boot Record of a partitioned disk.  It contains 

information about the size and type of partitions that have been created on a disk, including 
both the primary and extended partitions.  Since Partition Table is always 64-bits in size, and 

each entry in the partition table is 16-bits, a disk can contain a maximum of four primary 
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partitions (although an extended partition can be further artificially subdivided into logical 

drives). 
 
 

Interacting with File Systems 
 
In this section, we will take a look at interacting with file systems from a user‘s point of view.  
Regardless of which file system your operating system uses, there are several concepts that are 

common to all operating systems.  The first is the concept of a file.  A file is simply a collection 
of data that is being used together.  Pieces of a file may be scattered throughout a hard disk 

but, as we have seen, keeping track of all of those pieces is the responsibility of the File 
Manager.  From a user‘s perspective, a file exists as a single item on a storage device.  Files are 

organized based on file type (which is specified by a file extension) that associates the file with 
the application used to create (or view) it.  Directories (or folders) are simply a means of 
organizing files so that they are easier for the user to find and manage.  Sub-directories (or sub-

folders) can exists inside of other folders, and act as a means of further organizing files for ease 
of management.  For example, you can create a folder called ―Operating System Fundamentals‖ 

to store all of your notes and assignments for a course on operating systems.  Inside of that 
parent folder, you could create several child folders for each unit.  A folder for this particular unit 
could be called ―File Systems.‖  You might also decide to keep your assignments in a separate 

folder called ―Assignments.‖ 
 

In most operating systems, directories (or folders) are organized into a hierarchical structure.  
That is, they are organized from a root level (such as the C:\ drive in Windows), which then 
branches out like a tree into all of the directories and subdirectories created by the user.  Some 

directories are created at the root level by the operating system itself, such as C:\Windows 
(which stores all of the files used by the operating system), or C:\Programs (which stores the 

files belonging to most of the applications installed on the computer).  Figure 6.4 (below) shows 
the hierarchical structure of folders on a Windows XP system (as viewed using Windows 
Explorer). 

 

 
 
  Figure 6.4 

Hierarchical File Structure in Windows XP 

 

The location of a file in a directory on a computer is referred to as its path.  When we give the 
location of a file, we can provide it as either an absolute path or a relative path.  An absolute 
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path provides the complete path to the file from the root level.  For instance, in the example 

described above for folders you created for an operating systems course, the absolute path to 
that folder might be: 
 

C:\Documents and Settings\Users\User 1\My Documents\Operating System Fundamentals\Assignments\Assignment_1.doc 

 
This path provides the absolute location in the hierarchical file structure of a Microsoft Word 

document called Assignment_1.doc.  We could also describe the location of this file using a 
relative path.  A relative path is simply the path to a file from a predetermined relative level.  

For instance, we could provide the relative path for Assignment 1.doc as: 
 

My Documents\Operating System Fundamentals\Assignments\Assignment 1.doc 

 

Alternately, we could provide the relative path from the course directory: 
 

Operating System Fundamentals\Assignments\Assignment 1.doc 

 
Windows XP and Vista provide tools for navigating and managing files and folders.  The most 
common tool is Windows Explorer, which is shown in Figure 6.4 (above).  Windows Explorer 

shows the hierarchical directory structure of the folders in the left pane, and shows the contents 
of the currently selected folder in the right pane.  The hierarchical file structure for in Windows 

Explorer usually shows shortcuts to the ―Desktop‖ and the user‘s ―My Documents‖ folders at the 
top of the left pane, followed by ―Local Disk C:,‖ which is the root level of the primary hard disk 
(or hard disk partition). 

 
Windows Explorer also allows the user to specify how information about files will be displayed in 

the right pane.  For instance, you can show just icons or tiles for each file (with a graphical 
depiction of the file type).  You could also list all of the files, along with their associated sizes, 
attributes and their creation and modification dates.  In addition, Windows Explorer provides the 

user with the ability to manipulate files and folders.  Users can use Explorer to rename, delete, 
copy, paste, move or even create new files and folders. 

 
File attributes allow the user control access to files, as well as the archiving and backup of files.  
The most common file attributes in Windows are: 

 
 Read Only – the file can be read, but not modified. 

 Hidden – the file is hidden from other users (usually used to hide critical operating system 
files so that they are not accidently modified by users). 

 Archive – the file is marked for archiving, so that it will be included when the next file 
system backup operation is carried out. 

 Index – the file is indexed in a database so that it will be easier for the operating system 

to find and retrieve the file from the disk when it is needed. 
 

Of course, there are many other advanced attributes in Windows XP and Vista that can be set for 
particular users or groups of users. 
 

Like Windows, Linux also uses a hierarchical file structure.  Unlike Windows, the root level in 
Linux is actually called ―Root.‖  Even when logged into a Linux system as an administrator, the 

―Root‖ directory is usually hidden from the user when using the File Manager tool.  As shown in 
Figure 6.5 (below), when a user is logged in with root level privileges, the Linux File Manager will 
display a warning to prevent the user from accidentally manipulating critical operating system 

files. 
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Figure 6.5 
The Linux File Manager Tool 

 
As with Windows Explorer, the Linux File Manager tool provides a graphical depiction of a disk‘s 
hierarchical file structure in the left pane.  Again, icons depicting a selected directory‘s contents 

are shown in the right pane, and the user can select several options for what information is 
displayed about the files and folders listed. 

 
 

Unit Summary 
 

When using any computer, both the system and the user will need to store files when they are 
not in use.  Because the RAM used to store data and instructions while they are in use is 
temporary, permanent data storage is achieved using large capacity storage devices such as 

magnetic hard disks.  The operating system‘s File Manager is responsible for managing the data 
stored on a storage device, which includes providing a file system with rules for encoding, 

storing, organizing and retrieving data.  This data is typically organized into files and folders in a 
hierarchical structure.  Modern operating systems use a variety of strategies for allocating and 
managing the space used by pieces of files, which are often scattered (or fragmented) 

throughout a hard disk.  The most common are the Contiguous Allocation, Linked Allocation and 
Indexed Allocation strategies.  Each strategy uses a different method of allocating and tracking 

space for files, and each has advantages and disadvantages.   
 

Different operating systems use different file systems for encoding and managing data.  Two of 
the most common file systems are FAT32 and NTFS.  While NTFS is used by newer versions of 
Windows (including XP, Vista and Windows 7), FAT32 is still useful because it is more efficient 

for use with smaller capacity storage devices (such as USB flash drives, memory cards, or flash 
memory in mobile devices). 
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When a hard disk is formatted and partitioned for use with a file system (and an operating 
system), a Master Boot Record is created before the first primary partition.  The Master Boot 
Record contains instructions for booting a system once BIOS routines have been completed.  It 

also contains a Partition Table, which describes the partitions that have been created on the 
disk. 

 
From a user‘s perspective, files exist on a storage device as single items.  Files are categorized 

by file type, which is indicated by a file extension.  The extension associates a file with the 
application that will use it.  Files also have associated attributes, which can be used to improve 
file security and management.  Files are organized into directories (or folders) and subdirectories 

(or subfolders).  Windows operating systems provide a tool called Windows Explorer which helps 
the user to graphically navigate and manipulate files and folders in the hierarchical file structure 

of a disk.  A similar tool, called the File Manager, is provided by Linux. 
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